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I ABSTRACT

Calculations are presented that are elements of a modei to predict the
3 IR radiation emitted by high-altitude rocket plumes, because of the inter-

action of the plume gases with the ambient atmosphere. A model of plume
radiance is presented, appropriate to high altitudes where the average time
between plume and atmospheric species collisions is greater than the radia-
tive lifetimes of the relevant excited molecular states. The three parts of
the calculation - flow field density, molecular collisional excitation, and
molecular nonequilibrium radiation - are identified and discussed.

£ The penetration of a hypersonic low-density atmosphere into the exhaust
plume of a steadily firing rocket motor is studied by use of the kinetic theory
of gases. The flow field is modeled mathematically by employing the Hill-
Draper description of the exhaust jet and the BGK collision integral to reduce
the problem to an analytically interpretable and computationally tractable
form. The distribution function of the ambient gas is bimodal, with the

I unscattered fraction of the molecules peaked about the uniform freestream
velocity, and the scattered gas carried along with the macroscopic exhaust
gas velocity.

I Classical rotational excitation probabilities for the collisions of HF,
HC1, and OH with three atomic species have been calculated in three dimen-
sions by use of a Monte Carlo procedure. Results are presented for the
rotational excitation of both rigid diatomic rotors and those coupled via a
classical harmonic oscillator. liard-sphere intermolecular potentials are

employed to obtain results applicable to high-energy ( - 1 eV) collisions.
I The results of these two methods of calculation indicate that for the center-

of-mass collisional energy range of 1 to 10 eV, which dominates the problem
of interest, activation of the vibrational modes is quite inefficient.

Once excited to high rotational states, these diatomic molecules can
radiate at infrared wavelengths. The power radiated into a frequency band
via pure rotational radiation by a diatomic molecule with a permanent electric
dipole moment has been calculated both quantum mechanically and classically.
The results define the region of -validity for the classical approximation. It
is concluded that for the range of parameters of interest to the plume inter-

3 |ference problem the classical approximation is adequate. In order to be con-
' Icrete, the results of the theory are applied to the particular case of rotational

emission from the hydrogen flouride molecule.

I ,°,
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I| FAR FIELD PLUME RADIANCE MODEL

I1., INTRODUCTION

Plume interference can be roughly defined as the degradation of the signal-to-

noise ratio of a sensor due to the radiation emitted by the exhaust plume of a rocket

engine either aboard the same vehicle as the sensor or aboard some other, nearby

vehicle. If the engine is aboard the same vehicle as the sensor, the situation is one

of self-interference; if it is aboard a nearby vchicle, it is one of mutual interference.

The emphasis of the work reported here is on self-interference, although much, if

not all, of it is applicable to mutual interference as well,

In the summer of 1971, a panel with Dr. Hans Wolfhard of IDA as chairman

performed a preliminary study of the plume interference problem.l) In particular,

this panel divided plume interference into two basic parts: the near-field radiation

and the far-field radiation. The near-field was defined as the radiation originating

from IR-active molecular species emerging from the rocket nozzle in an excited

state. The far-field was defined as the radiation from plume species excited into

rn-active states because of collisions with atmospheric species. Thus, the division

of the problem is based on the molecular excitation mechanism.

On the basis of their initial examination of the plume interference problem,

the Wolfhard panel recommended that it be studied in more detail. The first efforts

to study the problem undertaken by ABMDA were directed towards the specific case

of the proposed HIT interceptor system!2' 3)

This report deals with the far-field plume interference problem, and is the

Final Technical Report of the far-field modeling efforts performed at Aerodyne

Research, Inc., during the ABMDA Plume Interference Program. The work done is

a natural extension of far-field plume radiance calculations made earlier under the

HIT Plume Interference Program.4"
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The calculations performed to predict the far-field plume radiance of the HIT

vehicle were for a small, short-pulsed solid propellant engine fired in the upper

atmosphere, typically above 200 km. The molecular radiating mode identified as

the dominant source of radiation in the far field was pure rotation of water. The

details of the various calculations are discussed in the HIT Program Final Technical

Report! 4 ) as well as i' separate publications ¶5'6,7)

These HIT program calculations were performed over a relatively short period

of time in order to calculate the signal-to-noise ratio degradation as a function of

time after engine shutdown, and the results of the calculations were used as system

design limits and criteria. The work reported below, and performed under the Plume

Interference Program, was done under different circumstances, however. The aim
of the far-field modeling under this later program was to broaden the predictive

capability of the initial modeling efforts by considering different aerodynamic regimes,

and by including IR-active molecular modes other than the water rotation considered

for HIT. To achieve this end a number of calculations were undertaken. (In addition,

data analyses and plume radiance predictions were carried into execution, and are

reported under separate cover in Volumes II and III).

Section 3 of this report discusses a calculation of the penetration of a hypersonic

low-density atmosphere into the exhaust plume of a steadily firing rocket motor using

the kinetic theory of gases. Section 4 concerns the far-field molecular excitation

process; classical rotational excitation probabilities for collisions of HF, HC1, and

OH with three atomic species have been calculated in three dimensions. Section 5

concerns the nonequilibrium radiation from the excited molecular states; the power

radiated into a frequency band via pure rotational radiation by a diatomic molecule

with a permanent electric dipole moment has been calculated both quantum mechanically

and classically. The calculations presented in these three sections, along with the

overall plume radiance formulation discussed in Section 2, are the far-field plume

radiance model elements performed during this program.

Before proceeding to the details, it is perhaps worthwhile to outline the present

status and extent of the far-field models. Thus far, there are basically two aerodynamic

interaction configurations which can be modeled. The first configuration is the decay

1-2
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of short-pulsed engine plumes operating at high altitudes. The engines aboard the

proposed HIT vehicle are of such a type. The second is the interaction region between

the relatively dense core of a continuously firing engine and the high-altitude atmo-

sphere. In each case, the engine size appropriate to the model has up to several

thousand pounds thrust at altitudes of 400 to 500 km.

In each of these two aerodynamic regimes, a number of IR-active plume species

have been included in the overall radiation model. The high collision-energy excita-

tion of, and the subsqw•t nonequilibrium radiation from the pure rotational motion

of H120 and the 1taltomic hy,'ride molecules HF, HC1 and OH have so far been con-

sidered. Concet':ation ha!- been centered on these pure rotational emitters, since

rotational radiatic'- forni, a quasicontinuous spectral background across the wave-

length regions of int,,,,rsi. in the plume interference problem, and thus, cannot be

eliminated by judicious , ivelength filtering.

While consideritig Lue scope of the present far-field plume radiance models, it

is worth noting that all ý.Ae calculations mentioned have begun from basic principles.

There is very little, if any, data presently available shedding light on the far-field

problem. Thus, che modeler bears a heavy burden, and it behooves him to base

his models as firmly as possihle on accepted physical principles.

Lj7 4 '
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1 2. PLUME RADIANCE FORMULATION

3I The overall objective of the far-field modeling efforts is to be able to calculate

plume radiance for a variety of interceptor configurations. In order to handle

j this objective, the overall radiance problem has been broken down into several parts,

as was mentioned in the introduction. This section will more clearly define this

division into parts, and, in paiticular, will describe the overall radiance formulation

necessary to combine these parts.

Generally speaking, the sequence of events leading to far-field radiation

from a rocket exhaust plume is as follows. The rocket engine burns for some time,

At, and an expanding mass of gas is emitted from the nozzle. As this gas flows away

from the nozzle, the plume molecular species begin to collide with atmospheric

species. During these collisions, plume species are excited into IR active states,

and they consequently begin to radiate. As they continue to travel away from the

rocket nozzle, the plume species continue to undergo collisions that can excite them

(or possibly deexcite them if they have not had time to radiate away the excitation

energy imparted in a previous collision). In addition, these collisions bring the

plume molecules into equilibrium with the ambient atmosphere, so that, asymptotically,

in time, the plume becomes a cloud of gas at rest with respect to the atmosphere

and diffuses away Therefore, the three individual parts of the far-field radiance

problem are the, calculations of the plume and atmosphere gas densities, the excita-

tion rate of relevant modes of plume species, and the power radiated by these excited

Smodes. The p um e radiance m odel, then com bines these separate calculati.ns to

calculate plume radiance.

I The overall radiance model to be used here is similar to the one evolved earlier

* for the specific case of the HIT intercept vehicle!8 ) The following discussion parallels

the discussion of that modellto be found in Ref. (8).

The plume is an extended source of radiation. The power on the detector from

such an extended source is given simply by

- PCEDItO PAGE BLANK1N0T FILJ• 1-5



= 2f ARN (2-1)

wh~re 2f is the solid angular field of view of the detector, AR is the area of the

receiver optics, and N is the plume radiance (emitted into the operating band of the

detector.: units: watts/cm -sr). The source radiance can be written

5 0 0
N 47 f dr fdS il (S i) n (S i , r , t) (2-2)

where I (Si) is the power radiated into the band by a water molecule in the S.th state,1 1

n (Si ; r , t) is the density of such molecules at point r in space and at time t, the

line integral dr is along the sensor line of sight, and the integral dS. is over the1

manifold of accessible molecular states Si. Although correct, this equation is not

very useful as written. For the conditions under which many interceptor systems

operate, considerable simplification is possible.

First, at high altitudes (e.g., above 200 kim) the atmosphere is sufficiently

tenuous that the average time between collisions of plume and atmospheric species

becomes longer than the radiative lifetimes of the relevant LWIR active excited states,

and most excited molecules completely deexcite via radiative emission between

collisions. This limit of short radiative lifetimes compared to mean collision times

is the exact opposite limit of the more usually encountered onc of thermal equilibrium.

Second, for a narrow field-of-view detector, the plume and atmospheric gases may

be considered uniform across the field of view. This means that the power radiated

by an ensemble of molecules in some elemental volume is given by

dP = EN (E*;• 1, w 2 ) n (E*- r,t) (2-3)

where n is the creation rate of molecules in an excited state E*, and EN is the total

energy ultimately radiated by the state E into the frequency band of interest, w to W2 "

1-6
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Thus, to find the plume radiance under these conditions, one need only add up the

contributions of all the excited states and integrate along the observational line of

sight. For the case of rotational excitation and radiation, of primary interest here

as explained in the introduction, the plume radiance, N, can be written as

00 00

Ndr dER EN (ER ; w1, (E';r, t) (2-4)
4w fwR 2 )n(Rrt

f J
0 0

where F"' (ER; w1 , w2 ) is the total w,- 2 band energy emitted by a molecule

in the initial rotational energy state E n is the rate of creation of such molecuies

at point r and at time t per unit energy, the integral dr is still a line integral along

the line of sight, and the dE R integral is over all initial rotational energies of the

molecule.

n (ER ; r , t), the rate of creation of molecules in the state ER per unit volume

per unit energy (ER), is related to the differential excitation cross section, the

collision relative velocity, and the exhaust and ambient gas densities. That is, n

is the number of collisions between exhaust molecules and ambient atmospheric

particles per unit energy per unit time producing the appropriate final rotational

state, and is given by

n (ER;' r, t) fdvafd3v Ldva- v r fa T e (•]E (2-5)

R e ý - _e )f ýe

I where v is the ambient particle velocity, v is the plume molecule velocity,a Ja e
ao- /a ER is the differential rotational excitation cross section, fa (va) is ,!,e

ambient atmospheric-phase space distribution function (units: cm-3 (cm/sec)-3),

and fe (v e) is the exhaust-phase space distribution function for the appropriate

plume constituent. This expression is the usual collisional rate constant expression

I for an ambipolar process. For the moment, the two distribution functions will

remain unspecified to maintain complete generality, but it is worthwhile to note

1-7



that in virtually every conceivable case of interest, the phase space distribution

function is separable into a spatial distribution function (i.e., number density) and

a velocity distribution function. For example, for a uniform ambient atmosphele

in thermal equilibrium at temperature To, I fa (va ) would simply become

2

a* n ( 2 ma )32 exp ( a ) (2-6)f a( va) = n . 27r kT .,e p T 0 2 6

where n0 is a constant number density (in the context of Eq. (2-6)), and the rest of

the expression is the usual Maxwellian velocity distribution.

Combining the expression for fi, Eq. (2-5), with the expression for the plume

radiance N, Eq. (2-4), yields the following:

3 f f3

4 1 = -w r dEfR % fa E (ER; ,1 W2)

LOS 0

(2-7)

x v - v ff ( (Ve)a e a E R a a"

If the two distributions are separable into two distinct pieces,

f (Va) = na ga (Va)

(2-8)

e e e e a
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i[ ! then
N dr n ane 0Cdd v d3v

tf N Lr f R f f e

LOS0

(2-9)

Sx va-e I •R ge (7ae ga (aa)]
R

where g (v) is a velocity distribution function (units: (velocity)-), n is thee
number denstiy of the relevant plume species, na is the ambient number density,
and n and n (expressed as n (r, t)) are both functions of time and position.

e a e,a

This expression for the plume radiance, N, along with the detailed calculations

Sof EN (ER; i' W 2), a o-/a ER' ne and n , form the basis of the present far-field

plume hb.ckground interference analysis. The results of the separate calculations of

n a, ne, & a /a ER, and EN can be used in an expression like Eq. (2-7) to calculate

a plime radiance for a sensor line of sight. This formulation oi' the plume radiance

Sproblem s appropriate for calculating the power falling on some given detector. If

more detailed information is desired, plume radiance contours and a somewhat

I different formulation are required. In the present context, however, it should be
emphasized that the individual calculations to be described in the following sections

i of this report are independent of the details of the exact radiance formulation, and

can be used in more detailed plume radiance calculations, or in radiance formula-

tions that relax the short radiative lifetime or spatially homogeneous assumptions

I discussed above.

!
I
I
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1 3. ATMOSPHERIC PENETRATION OF EXHAUST PLUTMES UNDER

RARIFIED FLOW CONDITIONS

3.1 Introduction

The flow pattern set up by the interaction of an exhaust plume generated by the
continuous tiring of a rocket motor and a tenuous atmosphere has been intensvely

studied in recent years. Most of this work has focused on those domains of motor

thrust and operating altitude permitting this interaction to be described on the basis

of continuum fluid mec.'anics. At altitudes sufficiently high for the ambient mean
I free path to become lai ger than the continuum interaction length scale, the analysis

of such a flow must be based on the kinetic theory of gases. Under these conditions,

th. length scale associated with the atmospheric penetration of the exhaust plume is

\,'A/Kn, where A is the nozzle exit area, and Kn is the Knudsen number based on

A and the mean free path, based ott average exit conditions (Muntz, Hamel, and

Maguire 1970)!9) This scale is, typically, much larger than the dimensions of the

vehicle carrying the motor, si.nc., Kn << 1. The presence of the vehicle itself may

thus be ignored in analyzing phenomena on this scale.

When the penetration scale is small compared with the ambient mean free path,

the response of the atmosphere to the presence of the plume is decoupled from the

process by which the atmosphere modifies the vacuum plume expansion. This

situation is appropriate to moderate-sized engines, such as those employed for

attitude control or maneuvering purposes in the upper atmosphere. The spatial

separation of these two phenomena has been exploited by Brook and Hamel (1972)¶10)

in their study of a spherical source interacting with a stationary background gas.

Baum (1973)(11) considered the expansion of a transient exhaust plume into a

rarefied atmosphere by invoking equivalent assumptions about the scales associated

with the ilteractions occurring in that problem..

PRECEDING PAGO BLANK-NOT
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The present work is concerned with the penetration of a hypersonic ambient

strain into a steady-state exhaust plume under the conditions stated above. The

exhaust gas properties are computed from a simple model proposed by Hill and

Draper (1966)¶12) of the continuum expansion of a jet into a vacuum, This expanding

jet serves as a diffuse scatterer of ambient molecules, The scattering is represented

mathematically by the Krook collision integral. This formulation leads to an

analytically interpretable and computationally tractable integral equation for the

ambient density distribution., The molecular distribution function is described

analytically in terms of the density.. The distribution function is bimodal, with the
unscattered molecules peaked about the uniform free-stream velocity, and the scattered
gas convected with the local macroscopic exhaust velocity. An asymptotic, analytical

solution to the integral equation is obtained., This result is used, in conjunction with

direct numerical solutions, to obtain illustrative flow patterns for both axially symme-

tric and nonsymmetric configurations.,

3.2 Mathematical Formulation

The formulation of the model will now be considered in detail. The penetration

scale is assumed to be sufficiently small compared with the ambient mean freepath

for collisions between ambient molecules to be ignored, The kinetic equation for

the ambient, molecular distribution function f(x, v) is a modified version of that given

by Gross and Krook (1956).

v -- w (nw -f)
O3x

W n - u
M

(3-1)

= _____ 3/2 exp 2kT)2
€ •rke e

n(x) J fd v

1-12
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Here n (x) is the ambient number density, and n el Ue, Te ar,repcilyth
exhaust gas number density, macroscopic velocity, and temperature. The maximum

velocity of x is the ambnt numb de the cross section ae, entering the expression

for the collision frequency w, is an effective momentum transfer cross section.

The relation between the momentum transfer between species computed from Eq. (3-1),

and that given by Gross and Krook (1?56),13) is explained in Baum (1973).1) The

mean relative speed is taken to be that between uM and the ambient wind u, because

the exhaust and ambient speed ratios, We and W.,, are large under the conditions of

" •interest.

The exhaust properties are assumed in a modified version of the form devised

I by Hill and Draper (1966)!12) The adopted forms are equivalent to the Hill-Draper

model far from the engine, but take on the prescribed nozzle exit values at x = 0.

I The relevant equations are:

Sne = BAexit exp { % _ .2 21

2 A 0 (1-cos) 2
To r2+BAexit e -. 0 0 - lc

T--• ( ne~ u = u r (3-2)
eT e e

I 2 2 2
e + e = -0 + 2 1
2 y-l me 2 2 --1 Al 2oI 0

The parameters B and A are given in terms of exit properties by

A•o u
(B 3/2 uM

(0-3)

M Y uM 2M
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The nozzle exit number density no, speed uo, temperature To, Mach number Mo,

and the ratio of specific. heats - are determined by the engine parameters. The

exhaust properties are expressed in a spherical, polar coordinate system, centered
A

about the unit thrust vector t. The polar angle is 8, and the azimuthal angle 4) is

measured from the plane containing the wind and thrust vectors. The wind vector

makes an angle 41 with the thrust vector. Thus (see Fig. 3-1)

A A A A
x = r (t cos8 + j sin~cos4) + k sinesino) - r r

A A
= (t cosqi + j sin q)

AA A A
v Vv = V (cosýt + sin~cos'7j + sin~sin-qk)

All quantities with a caret superscript are unit vectors. The system of Eqs. (3-1)

through (3-3) must be supplemented by the boundary condition that, far from the

plume, the flow is uniform.

r fx = n ( )/ exp 2 -=
(x v). 2oi ksoU.

u (3 -4)
U

S= kT -m

Here n , ny, and T are, respectively, the ambient number density, velocity,

and temperature far from the plume.

The representation of the exhaust gas displayed in Eq. (3-2) and (3-3) describes

the expansion into vacuum of a continuum jet plume. The motion is isentropic and

is energetic. The density distribution (and, hence, each displayed fluid quantity)

satisfies the inviscid equations of motion asymptotically, far from the nozzle exit.

The angular dependence of the asymptotic density distribution is chosen as an

empirical curve fit to numerical methods of characteristic solutions for a variety of

engines. The expressions for the parameters B and A ensure global conservation

of mass, momentum, and energy.
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The continuum description of the exhaust gas ultimately breaks down as the plume
expands. The rarefaction process has been s~udied by Grundy (1969)}(14}" who shows

that, except at large angles 8, with respect to the thrust axis, the dehsity and velocity

are given by the continuum solution. The radial component of the pressure tensor, on

the other hand, does not continue to decrease isentropically, but levels off at a finite,

"frozen" asymptote. The Mich number corresponding to the freezing temperature

is typically very large, on the order of 10-20 for most angles 9 Under these

circumstances, the interaction between ambient and exhaust gases is nearly indepen-

dent of the local plume temperature, as shown by the assymptotic solution attained

in Section 3.4.

The next step in the calculation is the construction of the fundamental integral

equation for n(x). Following Anderson (1965),15) Eq. (3-1) may be written in

characteristic form as

V d f-x (x++s) n s (x+vs) - f

(3-5)

r x + V'S

This describes the evolution of f, at any point r, a distance s along a ray through

the field point x, in the direction ,v (Fig. 3-2). Now integrate Eq. (3- 5) from minus

infinity to the field point s=o, applying the boundary condition represented by Eq. (3-4).

The result iz
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Figure 3,2 - Characteristic Ray Geometry. (Aloleeules at x Arrive From all
Direcetions v•. The Probability of Arrival Depends Upon the Distance
s From the Point of Last Collision.)
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-nv i ds' W(x+ Vs')*@(x+ s') e-/ ~ (x+VSs')

f =foo e + •
0

0 1 fs+ ) es (3-6)

T f to(.x + -VS) ds

-00

T * +s) ds

' v w' +

f t ex - 2 e
(x+s = ne 2 kTe/ NP

I . _sneo r+s'

ros - r- 2+ (st) + 2rs' [cose cosý iein O 7

The argument of n., u e? and T e in Eq. (3-6) isxý+ vs'. Note that the V dependence

is now displayed explicitly,5 since v depends only on the angle variables C and ,7

The integral equation follows from Eq. (3-6), by using the definition of Ti in termis

of the distribution function f.



Si

I

27r 00o

n f T- sin~dý J ) fv2dv f1f 0

I Thus

jIr 2,ir

n J sin1d J dI H4 W cos P; T exp W2 (1-cos2Slno 2w kTeo

00

(3-7)

+ dsl(3' H3 WeCOSa; .* I exp - 2e (1-cos 2)a -

*cos/3 = coskCos4' + sin~sinqpcos?1

Again, all exhaust properties in Eq. (3-7) are functions of k+vs'. The functions

SHn (p ,q) are defined by:
00

nn (p,q) -2 exp - (V-P)2-q/V

Anderson and Macomber (1964)(16) contains a detailed analysis of this function,

together with tables for n = 1, 2, 3. Eq. (3-7) determines the spatial density

I distribution of the atmosphere as it penetrates the plume core, while Eq. (3-6)

expresses the distribution function in tc-'rns of n. In this form, the equations are

- too complicated to be useful. However, by utilizing the fact that, in many cases of

interest, both We and W., are large, Eqs. (3-6) and (3-7) can be reduced to a

tractable form.
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3.3 The Hypersonic Limit

Consider the first term in the integral Eq. (3-7). For large Wo, the expo-

nential factor suggests that the integrand, considered as a function of ý, is strongly
2

peaked about cosf2 = 1. Examination of the Hn functions reveals that HTn' con-

sidered as a fmction of p, is exponeutially small for large negative p and propor-

tional to pn-2 for large positive p. Since the dependence of Hn on W. for large
nr-2

positive p is weak, part from a purely multiplicative factor WO, , the dominant

contribution to the ý integration should come from the neighborhood of cosf3 = +1.

To proceed formally from these ideas it is more convenient to do the C integral

first, and employ the variable x=cosC . The integral under consideration assumes

the form:

I dx H exp { W 2g(x)

-1

g(x) 1 - xcosq/ + Nx sinmcosl (3-8)

Applying the method of steepest descent to (3-8), the saddle point is at:

X cos P

2I .2sin2qisin2r-

cos)3Xo) 0 -]l-sin 2Psin 2

Both saddle points are real, but the contribution from the one associated with the

minus sign is exponentially smaller than that associated with the positive value of

cosa, and is henceforth ignored. The integral I is now readily evaluated as:
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1 2g

S2 2ýW (O
g(Xo)= smg(sin

g(X())= .2sin .2 4i2

2 . 2.2

WIN1 (X) = 2~ (1-sin 2 )sln 24'
1X0

-X0 = cos43 COSI 1 - sin 2. s n 23-9
COsjG 

(3-9)

Using the result (3-9), the integration over 7) may be readily performed. The

required integral is then:

J = 2- f 2 I d-q

1 0

Examination of this expression when \VW sin4' >> 1 (i.e., the undisturbed flow is

I neither parallel nor anti-parallel to the thrust vector) shows that the dominant

contribution comes from the saddle point at -q o. The apparent saddle point at

17 7r is spurious, with the result that:

wo --- 4 00 , T
Iw

T T -- r 7= , 7/ 0) (3-10)
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A separate calculation when W,, sinzk is 0(1) (but Woo>> 1) yields the same result for J.

Physically, Eq. (3-10) states that the overwhelming majority of the unscattered

ambient molecules are aligned with the unifolm wind upstream of the plume. A

similar analysis (the details of which are presented in Appendix A) may be applied to

the homogeneous term in Eq. (3-7). The hypersonic limit of Eq. (3-7) then bece,_,cý.

Iy

n 1
n (y) - 2 H4 (W dy' K(y', y) n-- (y)

00 2 4 Woq,)4 o,

(•_) 2 2 1/2 n

F(y, y')= I + U - c ost YLj u ,(y') n--- (Y')
yu Y / e o

H3 (We q) (3-11)

W e= We (y'), qe = q e(y')

cose = cosecosq,+ sinesinqicoso

y = r (BA)-1/2 (Kn)

-1 1/2
(Kn) = no0a(BA)

(+as), m r*(+s') (3-12)
0q kT kr W3-e2)
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The inhomogeneous term in Eq. (3-11) contains the variable q_0 - T (x-+as),
where "a is a unit vector in the direction of the undisturbed wind. This quantity is
directly proportional to the number of collisions experienced by a molecule traveling

in a straight line from infir.cy to the point in question in the direction of the undisturbed

I wind. Written explicitly, it has the form:

2 1/2 {.~1csL2

f dt- U 2M cosS]2ex

q -if 1 + u0 1CCs8 x

dt 'd'

-c 1 t2 + 2t cos + K exp { 1 2 (1 -cos L) 2}

II cose + tcosycos• •--t2--=

1+t + 2tcosP3 *

Scos8= cosC * + t

1 -l+t2 + 2tcosp *

I cosp* = cosycose + sinysinecoso (3-13)

I As y -o , the number of collisions vanishes and the inhomogeneous term in

Eq. (3-11) approaches unity. As y - o, the number of collisions experienced becomes

-I very large and the inhomogeneous term vanishes exponentially. The number of

collisions also becomes large when p = o and e =y , since the molecule has then had

to traverse the near singularity in exhaust gas density at the origin. Physically, the

ray on the opposite side of the nozzle exit from the wind is shielded from the ambient

molecules for finite distances r from the exit. The nature of q. near the singular ray
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corresponding to cosfe* = 1 may be analyzed as follows: The behavior is dominated

by the singularity at cos /3 * = 1, as y approaches infinity or Kn vanishes.: Thus, the

quantities cosju and cos8 in Eq. (3-13) may be replaced by their values at cos/3* = 1,

i.e.

cos/I cos4i, 1+t <0

cosp. Cosqi, 1 + t >0

cos8 +- -1,lt < 0

cos8 1 I, +t >0

Upon inserting these values into Eq. (3-13) the integral for q, may be evaluated

explicitly as:

exp X 2 (1+ COS*.2) [l1+ ,os T-

+ 1-UI exp ['A2 (1-cos12J [2] tan-1 (-ost-tan- 1 (-1bC°SB*)]}

a = 1-cos 2 f3• + exp AO - (1 + cos~)

b cexp 0- (3-14)
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I
This expression is exact along the singular ray cos/3* 1, where it reduces to:

I exp [ (I+CosP] +1 1 exp -§l---(1_cos0 J)2
W00 - 1010 2

(3-15)

Along the singular ray, the hypersonic approximation breaks down for large y, since

the boundary condition at infinity requires qo, to vanish there. Actually, unscattered

I molecules arriving from directions other than that of the freestream flow reach the

ray 0 =41, q = 0 for large y, permitting the boundary condition to be satisfied. Along

I any adjacent ray corresponding to a fixed value of cos)3* such that cosl3* $ 1, when

(Kn/y)2 is sufficiently small compared with 1- cos f2"*, Eq. (3-14) reduces to:

T- -- I - C-os P 1 + op A, + +Cos ,) 2
SWoo 2y -)0

I I exp A 2 (1 - COS*) 21
110 0 0 J1cs4I

Thus, the boundary condition at infinity is recovered, but with increasing slowness as

j the singular ray is approached. Note that the quantity y ]1 - cos 2 8 * is proportional

to the distance in the plane perpendicular to the ray 83* = 1 from the ray to the point

in question. The "shadow" region is then a cylindrical tube surrounding the singular
ray. Since the inhomogeneous time W- 2 H4 (W , q..) is roughly an exponential
in (- qm 0/Wo ), the width of the shadow region is given (in units 4B Kn-') by the

Ifactor multiplying (y V4 1-cos 2 *)-1 in Eq. (3-16).

I
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Now consider the homogenous term in Eq.. (3-11). The variable qe =(m/kye)r*

has the explicit form:

__e -1 u 2 21 [ 2 E]1/2
We (Kn) u(y,) exp - 2 (1-cos )2 1 + uM 2 -2 UM cosE1

eo Uo 110 10

tan-h1 V exp 2 (l.cose)2

- K" 12 (lcos)

-tan- exp '1 2 (1-cose 2  (3-17)

The quantity qe is proportional to the number of collisions experienced by a molecule

initially penetrating to a distance y' along a given radial ray as it travels outward

along the ray to the field point at y. Note that qe/We(y') becomes very large (0 (Kn

fore < 60 and realistic values of AC, and u, /uo) at y' = 0 for fixed y. Since the
function H3 (We, qe) is roughly exponntial in (- qe/Ve ), the probability that those fe\

molecules deposited upstream of th ýit can penetrate to the other side is very small.

Moreover, the contribution to d ity at any point from molecules scattered radially

inwardtowards the nozzle is exi illy smaller in W 2 than that from molecules
scattered radially outward away I he nozzle. For these reasons, the lower limit

of integration in the homogenous terzi of Eq. (3-11) is the origin. Similarly, the

overwhelming preponderance of outward scattering events means that there is no

contribution to the number density at y from points y' > y on that ray. Further

details are given in Appendix A., Finally, the functions Hn may be simplified b\

applying tie method of steepest descent once: again. The result, valid for p >> 1 and

Z S q/p 3 finite, is the first term in Anderson and Macomber's (1964)(16) asymptotic

expanSion:
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i

Hn(P q) (P to)1n 2 exp +

( 1 + 2Z/t 3) 1 2t 02tJJ

to l~ ~1~ A+ 2 ~1/3 2J~+ 1/32

2'7 227 ~ --
Sto + Zý-+ _L+ +' z" + _-+ 27 +----

Z q/p 3  (3-18)

n-2

Note that as q-.-o, Hn (P,o) , p , while for large q>o:

H (n-2)/3 { q 2/3p

n (3/2)1/2 2

The quantity p 2Z in the exponential is equal to q, /W. in the inhomogeneous term of

Eq. (3-11), and to qe/W e in the homogeneous term. These quantities are independent

of W and We, respectively. Thus, the quantity W and W enter the Hn functions"-2 e -

only through the quantity Z, which is formally O(W ) or O(We-2 ) for fixed y.

These terms are retained in Eq. (3-18) to allow y to vary from a moderate multiple

of Kn to values>> 1. The principal effect of this variation is to shift the location of

the saddle point to for radius of y S -L. Although the shift is not large, the presence

of the quantity to in the exponent of Eq. (3-18) can change the computed value of

n/nOo at a given location by as much as a factor of two.

The physical picture represented by Eq. (3-11) may be summarized as follows:

Molecules entering in a beam parallel to the undisturbed flow are scattered out of the

beam by the exhaust gas, which is unaffected by the process. The scattered molecules

are thus deposited along each radial ray in accordance with the inhomogeneous term

in Eq. (3-11). The molecules are then caught up in the radial expansion and swept

away from the nozzle, undergoing additional collisions as they proceed radially out-

ward. The speed ratio of both the incident beam and the scattered gas is so high that
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the thermal spread in molecular velocities may be ignr'red, in comparison with the

velocities considered. The exhaust gas density is so high in the vicinity of the nozzle

exit that no molecules can penetrate this region. As Lhe radial distance from the

nozzle exit increases, the penetration process becomes more efficient. Ultimately,

the exhaust gas density is sufficiently low for the ambient molecules to pass through

the plume undisturbed, and the ambient density is recovered. The phenomena outlined

above are illustrated schematically in Fig. 3-3.

The remainder of this paper deals with the solution of Eq. (3-11), and the

computation of two examples. The following section contains an asymptotic, analytic

solution of this equation, valid far from the nozzle exit. Section 3. 5 discusses the

computational procedures employed in the direct numerical solution of Eq. (3-11) an,'

in the evaluation of the asymptotic result of Section 3.6. The analytical and numerical

methods explained in these two sections are applied to an axially symmetric flow

(p= 0) and a nonsymmetric,"side blowing" flow (4 = 900) in Section 3.6.,

3.4 The Asymptotic Solution

When the radial coordinate y is 0(l), the solution to Eq. (3-11) may be readily

obtained., Under these circumstances, ue(y') approaches uM , while qei/We becomes:

2e u1/22](1W u
w• 2• +yŽ -~ ,.-cs Lx A;-(1-cos9)] (;, 1

(3-19)

Thus, qe/We is 0(11, which means that the quantity Z /W in the function H3
may be set equai to zero, reducing H3 to an exponential, Eq, (3-11) then reduces to:
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•gi y
Ini 2 H4 (y)I j(y) dy, G(y,) nf(y,)

1/ .2

2 1 00
J(y) 

O 
y exp uSE + \7 ]

exp [-.,., (1-cos09)2"'

=~y i +Y u 1-ý 2 u McosC ,

2 Ul~ u
2y 00

exp [-.12 (_eosO)2 (3-20)

Equation (3-20) is readily solved by differentiating with respect to 3y to obtain a first-

order differential equation for the quantity Ln/n. - 1/W2 H4 (Y)j J(y). Examination

of Eq. (3-20), as y approaches zero, shows that this quantity should vanish at the

origin. Thus:

Y
Fn 1__ F

SH4 (Y = 2 exp A. (1-cosO) dy' - Ii 4( y) (3-21)Wn -I uM \V2 ]

The function H4 (y) can be simplified in a similar manner away from the singular ray.

The function q, then has the form:
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I
q00  _

0 2(i' ) ooj 1/2 F - cos /)

+ (UM/u) _ 2(e_,u Cos oxp - o s (1

-' 1+t + 2tcos3*

Then, provided that the numerical value of SI on the ray under consideration is notS3 2•

too large, q0 , /W 3 may be set equal to zero in the function1/W 2-)H4 (W00 q0 0 )'

thereby reducing it to an exponential in (- S2/y). The quadrature on the righthand side

of Eq. (3-21) may then be evaluated in terms of the exponential integral function

E2 (Z). yielding the result:

2 1/2
S=---- H4 IW\'e, q) + - 2COSE]

n n 1 H+

2, , cs2] ÷

e_* Zt

E2MZ f e2 dt

1

Tfhe first term in the solution (3-2.3) could also formally be replaced by exp |•y

I-/1

. to the present order of accuracy. However. the analysis in this section can be

interpreted as an attempt to find an approximate expression for the scattered gas

1 contribution to the number density, as represented b\ the homogeneous term in

II I-3,1



Eq. (3-11). The second term in the solution (3-23) is the desired result, as is the

righthand side of Eq. (3-21). However, the other expression is too complicated to

study analytically, and sufficiently expensive in computer time (relative to the direct

numerical solution of Eq. (3-11)) to warrant its use without the further approximation

represented by Eq. (3-23).

Now consider the behavior of the solution as a function of y and e. For small

y (assuming for the moment that the asymptotic solution is at least qualitatively

correct) the function E 2 (n/y) has the asymptotic expansion

E - Le-- n/Y 1+0 (aALL

The scattered gas contribution becomes very small as the nozzle exit is approached

because few ambient molecules are able to penetrate the dense region of the plume.

For large angles 8, the factor exp {-2 .(1-cose) 2 1 (representing the angular

dependence of the exhaust gas density distribution) cuts off the scattered gas contri-

bution because there are so few exhaust gas molecules to serve as scatterers. For

large y, E 2 (S/y) may be approximated by:

E -2 g log (R)

Thus, the scattered gas density rises to a peak, then decays much more slowly with

increasing y. The decay is caused by the increasing volume in the plume available

to molecules scattered much nearer to the nozzle ano then convected radially outward.

The additional local scattering far from the nozzle contributes weakly, accounting

for the logarithmic factor in the scattered result. However, the exhaust gas density

ultimately decreases to the point where the unscattered contribution dominates,

permitting the uniform boundary condition at infinity to be recovered.
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3.5 The Numerical Computation Procedure

The numerical computation of n/n., requires the evaluation of the inhomogeneous

term in Eq. (3-11) or Eq. (3-23),together with a procvdure for calculating the

homogeneous term in the integral equation. The evaluation of the asymptotic approxi-

mation to the H n functions is straightforward, as is the computation of the function E2,

as a function of its argument. Hence attention is confined to the computation of qO

which determines the value of the inhomogeneous term; and to the evaluation of the

homogeneous term in Eq. (3-11).

The computation of the integral defining q., will be considered first. Note that

the integrand is not singular in the entire range of integration, since its denominator is

equal to or greater than one throughout this range. However, as is shown in Section 3.3,

the limit of q., as y -- - and cosp* *. 1 is non-uniform; that is, the value of the limit

depends on the order in vhich these two limiting processes take place. Numerically,

this non-uniformity means that cne must be very careful in evaluating this integral

when both y is 0(1) or larger and cosB* is very close to 1. For such values of y and

cosP *, most of the contributions to the integral come from points very close to t = -1,

and the accuracy with which cos8 and cos; can be evaluated at these points is limited

by the arithmetical precision of a computer.

A close examination of the variation of the integrand J of Eq. 3-13 with respect to t

shows that the integrand varies smoothly in the entire range of integration, so long as

cosý( is not close to 1. For cosp near 1, the integrand has very sharp variations

near t = -1, and a peak value in that neighborhood. For cosf3 1, the peak of the

integrand is exactly at t = -1, and is discontinuous.

In view of the above described peculiarities at the integrand J, the following

method was devised to compute the integral. The integral, I, is divided into two

parts, IL and IR:

1
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L + R

O1E

IL = f J(t,y*)dt

0

IR = f J(t,y*) dt

where E and E2 are two small positive numbers. E is chosen such that the omitted

part of the integral, from -1-4E1 to -1 divided by IL' is equal to the specified fractional

tolerance (TOL) for the computation of the inhomogeneous and homogeneous terms. E2

is chosen in a similar fashion. It can be shown that, for cosl* = 1, E 1 and E2 are

given by:

27/" 2 (cs)2 K

E = TOL e c Kn

2 2
A00  (-O4 2 A00  1CO41 (3-24)

E TOL e 2 (1cs)arctan L~ 2 (1cs K)2 n
2 Y

Equations (3-24) are, in fact, used to compute E and E for any value of coso*. It

can be shown that these values of E and E2 are smaller than the required values, thus

resulting in smaller values for the omitted parts of the integral.
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I

IL is computed in steps At of the integration variable t, starting from t 1- '

I I and advancing to the left towards t =-o. The magnitude of each step At is determined,

such that the integrand cLanges by about one order of magnitude in the range of the

i step. The contribution to IL from each step is completed through a six-point Gaussian
integration. IR is computed in a similar, steplike fashion, starting from t = -1 + E2
and advancing to the right towards the origin. IL and IR are computed concurrently,

so that the total integral I is progressively built up from both sides of the point t = -1.

The computation of IL is terminated when the most recent contribution to IL, divided

1by the accumulated I, is less than the fractional tolerance, TOL, of the computation.

The computation of IR is terminated in a similar fashion, or when the origin is reached.

I Now consider the calculation of the homogeneous term in the integral equation.

For computational purposes, it is more convenient to work with the radial coordinate
I r*, defined by:

_ r -1
r*(Kn) y (3-25)

xiBA

The initial growth of the homogeneous term in this variable is slow and well-behaved,

taking place over the range 10 < r* < 100 along most radial rays. Letting the dimen-

sionless, inhomogeneous and homogeneous quantities in Eq. (3-11) be n.* and nh*,

respectively, this equation may be written in the form:

r*

1

I
n *(rl) n.* (r') + n * (r') (3-27)
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In the "exact" definition of the integral equation, rj* is equal to zero. However,

in the numerical evaluation of the integral of this equation rr* can be much larger

than zero as will be shown later.

Now, consider the following mesh of points:

r r*, r* . ._. r* , r*
1 2 3 m-2' In m m+l

r* :r* + h (3-28)
m+l m m

Note that, in general, a variable mesh size is assumed. Assume that the values if

n* are known at all points up to and including the point r* . The value of n* at tne
m h

next point, r* is computed by the foliowir.g procedure.m+l '1-

The integral of equation (3-26) is divided into two parts so that:

n* (r*m 1 ) I + 12 (3-29)

where

r*
m+l

I (r, r* n* (r') dr' (3-30)

r*
m

m

12 K (r', r ) n* (r') dr' (3-31)

1

SI1 is evaluated by the parabolic integration formula (3-B10) of Appendix 3.
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I

Thus:

Sh 3

6 l -IT- K _r*1 , r* +1) n*(r*)

6hm_1 (hm h-_1 ) -n m

h (3hm -+ hm)
+ K (r*, r* )n* (r*)

6 hm 1  n m+i m

h (3hrm-i +2 hm) K (r* r. (n* + *

M ,r* + n rml n rml6(h + hm-1 ) m+i' rI * h

(3-32)

Substituting 11 from Eq. (3-32) in Eq. (3-29), and solving the resulting equation for

n(r*m , one obtains:

Ii + 12

h nb +1) ý1 -rm(3him_1 + 2 hm)/6(hm + hm_)] (r* 1 , r* * )

where I is e(ual to I1, as given by Eq. (3-32), with n*(r* set to zero.

h m+)s

As can be .,een from Eqs. (3-31) and (3-32), the righthand side of Eq (3-33)

involves:

I (i) The values of n* for all points up to and including the point rm, which are

known; and

1 (ii) The value of n*. at the point r* which can • evaluated separately.
I m+i

P• Thus, the righthand side of Eq. (3-33) involves quantities that are known, or can be

I evaluated independently of n (r* ; therefore, Eq., (3-33, is an explicit expressionhrm+1)

for the unknown n' (rm*l).
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12 is computed by successive applications of the parabolic integration formula

(3-Bl1) of Appendix B to three points at a time, starting with the point r* andm
advancing to the left towards the point r*. The reason for computing 12 backwards,

in this way, is that the kernel K(r', r~m+l) decreases sharply as r' becomes smaller

and smaller than r*, and thus the contributions to 12 decrease sharply. This means

that the computation of 12 can be terminated when a desired accuracy is achieved,

much before reaching the initial point r*. The computation of 12 is terminated when

the most recent contribution to 12, divided by the sum of 12 (accumulated) and I'P, is

smaller than a specified fractional tolerance (TOL), which is also the tolerance

within which n*t is computed. If m is even, and the computation of 12 must be extended

all the way to rt, then the last contribution to 12 is from two points, rather than

three, namely, points r* and r* , and formula (3-B9) of Appendix B is applied instead

of formula (3-B11).

The procedure described above for the computation of n* requires that nA be

known at the first three points, r*, rý and r*. The value of n* at rt is the initial

condition of the problem, and when ri is taken equal to zero, one has the "exact

initial condition" of the problem, which is n*(O) = 0. A close examination of the

situation reveals that, as one travels along a radial ray from the origin outwardl, n*

decays rapidly from 1 to a very small value, then increases back to 1, while n*

increases slowly from 0 to some maximum value, then decays back to zero. Thus,

in the numerical evolution of n*, a great deal of computer time is saved, without any

loss in accuracy, by st,,ting the solution of some r* larger than zero, with the

approximate initial condition n* = 0 at r*. r* is selected so that it is in the region

where n*. has its minimum plateau. The rapidly decaying kernel annihilates the

errors associated with this approximate initial condition. Thus:

n (r1) -30 (3-34)
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The value of n* at r* is computed by evaluating 11 in k•q. (3-30) through the

j trapezoidal rule (12 in this case is, of course, equal to zero). As for the value of

n* at r* it is computed by evaluating both I1 and 12 in Eqs. (3-30) and (3-31) by
h 3'I the trapezoidal rule. Thus:

h h/2 [K(r, r*, n*(r 1 ) + K(r*, r*) n'l(r*J
S2= 1 -(h,/2) 1X(r*, r*) (335)

21

4 '

S~~1/2 [h :r*, rn *(r*) +(hI + h2 i k(r*, r*) n*(r*) + h2 R(r*, r*) ný(r*)

S•n(r*)
h 1 -(h2/2) R(r*, r*)

13-36)
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I
If the integrating step, hm, from r* to r* is too large, then the denominatorM m M+l1

in Eq. (3-33) can be small, or even negative. This must not be allowed since

instabilities will result. Now, it can be shown that:

mR l rm* , r* (r*m' rm\ (3-37)

and, therefore, if the integrating step is chosen such that-,

h = (3-38)m /r *
K Ir*, rm*

then the denominator of Eq. 13-33) is roughly equal to one to 0. 5a. Thus, for suffi-

ciently small values of the parameter a, instabilities can be avoided., The correct

value of a for a given radial ray cannot be defined a priori, but one anticipates that a

value between 0. 1 and 1 should do. Indeed, in the applications discussed in the next

section, the value a = 0.5 was employed. This ambiguity in the right value of a

notwithstanding, Eqs. (3-37) and (3-38) show that h increases as r* increases, a
m m

very desirable result. Another criterion for the selection of hm is derived by fitting• * an *
a parabola to the values of n* at the three points, r 2 , rm1, and r, then extrapo-

lating to a point r* where the fractional change in n* is a small number 03, on
m+ 1 h

the order of 0.01 to 0.1. The value of /f actually used is 0.05. The resulting value

of hm is compared to that given by Eq. (3-38), and the smaller of the two is selected.

For the two initial integrations with the trapezoidal rule, a sufficiently small integrat-

ing step is taken readily satisfying the stability considerations discussed above.

The computer program is in FORTRAN IV, and has been run successfully on the

UNIVAC 1108 system. Before final production runs were made, the accuracy, stabil-

ity, and efficiency of the program were investigated through several test runs, by use

of a trial integral equation whose exact solution was known.
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The procedure for calculating n.* works very well for any value cf r*, so long as

cos P* is not equal to 1. For cos 0 * = 1, the computer program is only accurate

for moderate values of r* However, the solution is not physically meaningful for

r * sufficiently large for y to be 0(1) on this ray. The procedure for calculating nh

is stable and accurate. It is efficient for values of 0 equal to or less than about 450

if an accuracy of 0. 1% (TOL = 0.001) is required. By accepting an error of 0.5%

S(TOL = 0. 005), the program can be utilized out to angles 0 of 600. For larger values

of 0, the value of the parameter a, required for an accurate solution, is so small that

} the integrating steps become very small, and a great deal of computer time is required

to obtain the solution. For such values of 0, nh can be computed much more efficientl!

from the asymptotic expression (3-23), valid quite close to the origin for such large

angles. A computer program with the asymptotic expressions for nh* has also been

developed, and works quite well.

For an accuracy of one part in a thousand (TOL = 0. 001), it takes, on the average,

about 30 sec of 1108 central processing unit (CPU) time to compute n. and nalong a
n h

radial ray, all the way from the origin to the value of r* where the ambient condition

is recovered. The CPU time required for the calculation of n* is about three times

that for n.*.1

3.6 Numerical Results

The theoretical and numerical analyses described in the previous sections have

been applied to the calculation of an axia!ly symmetric flow ("aligned flow") 0=0

and toa "non-aligned" case., 900. The values of the remaining parameters needed

Sto uniquely determine the solution for n/n, were the same for both flows, and are

listed in Table 3-I.

TABLE 3-I. Parameters Employed in Computed Results

I woo U M/uO -y M° m/me

5 10 6 0.3 1.3 4 0.8
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The integral equation was solved directly, to an accuracy of 0. 1%, on rays spaced at

five-degree integrals for 0 < 450, and with a reduced accuracy of 0.5% for values of 0

between 450 and 600. Equation (3-23) was ased to obtain results for angles 0 greater

than 600.

First consider the aligned flow: Figure (3-4) illustrates the relative magnitude

of the scattere I and unscattered contributions to the density on the 0 = 300 ray. Near

the nozzle exit, both contributions are small because most of the molecules in the

incident, ambient stream are deposited before reaching the 30 ray. As y increases,

more molecule.s are deposited on the ray, and then convected outward by the exhaust.

Since the scattered gas at a given y station is an accumulation of molecules scattered

earlier, this )uildup is quite rapid, and gives rise to the overshoot in density depicted

in the figure. The combination of the geometric relieving effect and reduced scattering

discussed in Section 3.4 then reduces the scattered gas contribution very slowly (note

the logarithmic scale) to zero. The unscattered gas density rises monotonically with

increasing y to recover the boundary condition at infinity.

The abcve picture holds qualitatively on all rays, with only the magnitude and

location of the maximum in the scattered gas contribution changing from ray to ray.

Figures (3-5) and (3-6) show the development of the radial profiles with increasing 0.

Near the thrust axis, the recovery of the ambient condition is slowest because the
0plume is densest. The density overshoot begins at about 0 = 15 , and increases in

magnitude with increasing 0, until peak values are reached for values of 0 sli itly

larger than 0 = 600. The location of the peak moves closer to the nozzle with increas-

ing 0. For larger angles, the density drops rapidly towards the ambient value, be-

cause the exhaust gas density is so low that no significant scattering takes place.

The results predicted by the present theory for values of y smaller than about
1 -,* *

102, corresponding to r = 10, must be treated with extreme caution. Since r

measures the radial coordinate in units of exit radii (P3 is about 0.3 in the present

example), phenomena on this scale may be strongly influenced by the details of the

geometry of the body carrying the motor. Moreover, even in the absence of a finite

body, the exhaust gas characteristics in the vicinity of the nozzle are not described
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accurately by Eq. (3-2). However, the solutions for larger y are not sensitive to

the behavior of the results for y 0(10-2).

T e density is plotted as a function of angle at several radial stations in Fig.

(3-7). The ambient conditions are recovered progressively later in the expansion as

0 decreases, since the region near the thrust axis is the least accessible to the atmo-

spheric gases. Figure (3-8) shows the corresponding curves for the windward portion

of the plane containing the wind and thrust vectors in the non-aligned case. The den-

sity distribution is qualitatively similar to that in the aligned flow. However, the

asymmetry is such that the recovery must be made slower on the leeward side (Fig.

(3-9)), because of the fact that the atmosphere must penetrate through the entire

windward portion of the plume before reaching these rays. The singular ray is now

at 0 = 900, on the leeward side. Although the model predicts some scattering along
this ray, the value of q./W., is 0 (e- A2 /Kn), which is less than 2 in the present

problem.
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APPENDIX A. HYPERSONIC LIMIT - HOMOGENEOUS TERM

The homogeneous term inEq. (3-7) may be rewritten (inverting the order of

integration) as-,

0 21. r .W2 ( 2 c

ds', d, sin d• s-we H3  CoS&,q

Go 0 0 ee

(3-Al)

0
C v

qe - ds w + vs)

Sf

Here, cos 0i is given by Eq. (3-6), while the quantities Te , We' and n/nm are

functions of X + vs'. The basic assumption is analogous to that employed in Section

3.3, that the dominant contribution to the angular integrations over t and v1 comes from

the neighborhood of cos & = 1, because of the large factor W2 in the exponential in the

integrand of term (s-Al). By letting x = cos P be the first integration variable, the

exponential factor in te-.n (3-Al) becomes-

2
1 2 r f(x)

2~^ e, x+s)2

(3-A2)

-2
f(x)= 1- Cos 0 + sin0cos (T 6)

L.
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Although the quantity multiplying f(x) in (3-A2) is itself a function of x, through its

I dependence on the variable x + v s', the fact that it is large and positive for all values
of v means that the contribution to (3-Al) will be exponentially small, except for

values of v^ corresponding to cos a = 1. Examination of Eq. (3-6) shows that cos a = I

can only occur for v = r^. Thus, the exponential factor (3-A2) may be approximated by-,

II 1 2 r2I -2ý e (r + s') 2fx)(-3

W is a function of '(r + s') in Eq. (3-A3). The method of steepest descent may now

be applied to (3-Al) in the same way that the corresponding integrals for the inhomogeneous

term were evaluated in Section 3.3. The result implies that the remaining terms in

J the integral are to be evaluated at x = cos 0, 7 = 0. When these values are inserted

into the expression (3-6), then cos a = 1, as required for consistency, provided that

s' + r is positie. Where s' + r is negative, cos a = -1, and the contribution to

(3-Al) is again exponentially small in W , this time because of the fact that the func-

ee e2/2)tion H 3(-W ,q ) is O(e-e ). If now, the substitution r'= s'+ r is made in the integra-
tion over s' which remains in Eq. (3-Al), then the homogeneous term in Eq. (3-11) is

recovered.

11
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APPENDIX B. PARABOLIC INTEGRATION FORMULAE

WITH VARIABLE INTEGRATION STEP

Consider the following mesh of three points x 1 , x 2 , and x 3 :

x11 x2 =x1+h , x3 =x2+ h
1 h 1  3  2 2

and the following integrals of a function f(x):

x 2

1i1,2 =$ f(x) dx (3-BI)

xl

x3

"1 2,3 f • (x) dx (3-B2)

x 2

x3

1,3 f(x) dx (3-B3)
% x1

Obviously

1 •, 3 1,2 + 12,3 (3-B)
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The objective here is to derive approximate expressions for these integrals, by

I j use for f(x) of the second-order, lagrange interpolating polynomial:.

flI 
f2

f (x) h_ h'+ h 2) (x x3)( , x3 ) h (x x1)(x_ x3 )

(3-B5)

+ h 3h + h (x - x1) (x -x 2)

} where fl = f(xl)' and so on.

x2

S ~ ( x -x )x 3 dx x x 3 )(X X "x~+ x x3  x1)

x11 2 (3x 3 x2 -2xl)

6 (x2xl) (3 -1

h (3h12 + 2hh) (3-B6)

By interchanging x 1 and x2 in Eq. (3-B6), one obtains:

|~x•.11 X2

S (x-x 1 )(x-x3 )-dx 6 (x-Ix 2 )2 (3x 3 _x1_2x2 )[~x•
h 12

= 6- 2- (3h 2 + h1 ) (3-J07)

I
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By substituting x3 by x2 in Eq. (3-B7), one obtains:

x2
21

S (X-1)(x x2 ) x = (x 2  x 1)
xI

6 1 (3-B8)

Therefore:

Fnlybdi E.. (3 f B 1 do(3-B9)
1,2 6ih+ h ..- 1 6h 2, 2 ,,2-+ h,1 ) 3

Furthermore, by interchanging h2 and hf, and f and f in Eq. (3-B9), one obtains:

1-53

h 3  h 2 (h 2 + 3h 1 ) h 2 (2h 2 + 3h 1 )
12,3 6Ih2 + l I 6h '2 6h f 3  .(3-B1O)

6h(2 + 1  1 ~ ~ 2 + 1i)

Finally, by adding Eqs. (3-B9) and (3-BlO), one obtains:

2
6 h1 (hh 2_+_h_1) 2h_-_h

11,3 -2 6 th 1  12 Ih h_ 1 h ( 2  Ah1 + 2 h 2- 1 f(3-B11)

The error involved in the approximate integration formulae (3-B9) to (3-B11) is

of the order of h . For h, h formulae (3-B9) and (3-B1O) reduce to the well-known

formula of Adams-Moulton, while formula (3-Bil) reduces to Simpson's rule.
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4. CLASSICAL CALCULATIONS OF ROTATIONAL AND VIBRATIONAL
EXCITATION IN ENERGETIC ATOM-DIATOMIC HYDRIDE COLLISIONS

1 4.1 Introduction

Since 1960, literally hundreds of calculations of inelastic energy transfer

in simple atom-diatom or diatom-diatom collisions have been published. The

overwhelming bulk of this work has been pc.-formed while using either the rigid

rotor approximation to study only translatio'ial-rotational energy transfer or a

collinear collision scheme to isolate translational-vibrational energy transfer.

Recently, a number of workers have published studies that treat the

problem of coupled vibrational and rotational energy transfer in simple collisions.

These efforts include the classical, two-dimensional models of Benson and

Berend, (17) Kelley and Wolfsberg, (18) and Bergeron and Chapuisat, (1 9 )which

airn primarily at elucidating the effects of rotational inelasticity on collisionally

induced vibrational excitation or de-excitation. Semiclassical, three-dimensional

treatments of this same problem have been presented recently by Wartell and

Cross, (20) Stalle p(? and Sorensen Other studies of interest incluue the

quantum mechanical treatment of the He-H 2 collision system by Eastes and

Secrest, (23) which uses the He-H 2 interaction potential calculated by Gordcn and

Secrest, (24) and the semiclassical treatment of the Ar-H 2 system by Shin, (25)

1 |which uses an interaction potential based on molecular beam data. Doll and

* •Miller 26) have also treated the He-H2 problem by using classical S-matrix

techniques. In addition, Thompson(2 7 ) has been able to calculate reasonable

j rotational and vibrational energy transfers for a number of atom-diatom systems

by using Monte Carlo classical trajectory techniques and semiempirical valence -

I bond interaction surfaces.
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The focus of the present work is the effect of vibrational inelasticity

on the rotational excitation of such diatomic hydrides as HF, HC1, and OH

in energetic collisions with atomic species. Classical, three-dimensional

calculations of rotational excitation probabilities for both rigid and nonrigid

diatomics in collisions with several atomic species are presented here, and

the effect of the rigid rotor approximation is evaluated.

4.2 Interaction Potentials

The collisions of interest have center-of-mass energies in the range of

1 to 5 eV. Such interactions occur well up on the repulsive core of reasonable

intermolecular potentials and are insensitive to the weaker "long-range" portions

of the potetitials. This insensitivity is exploited by adopting hard-sphere poten-

tials for the colliding species. Each diatomic is modeled with two interpenetrating

hard spheres, while monatomic species are represented by a single sphere. The

diatomics are either held rigid along their line-of-centers at a distance between

sphere centers fixed by the equilibrium ground-state internuclear distance of the

hydride in question or are attached along the line-of-centers by a one-dimensional

harmonic oscillator.

Sphere sizes for bound and unbound atoms are estimated from the high-

energy molecular beam-scattering data of the Amdur-Jordan group at MIT or

of the Leonas group at the Moscow State University. The sphere sizes selected

represent the effective range of one eV potential for the species in question and

are determined by methods outlined in earlier work on atom -H 2 0 collisions. (28)

Equilibrium bond distances for the hydride molecules are taken from

Herzberg, (29) and are shown in Table 4-I,along with hard-sphere radii for mole-

cular atoms and monatomic -collision partners. Sphere radii for 0, H, Ar and

He are taken from Ref. (28). The F-atom radius is based on data of Belyaev,
(30) 9.30et al., which determined a potential of V(Ar-F) of 506/r , where \ is

expressed in eV and r in A. The C1 radius is estimated, since no pertinent
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molecular beam data could be located. The same radius and internuclear

separation is used for cases involving the isotopes CI and 37C1. All other

atoms are assumed to have only the mass of their predominate isotope.!
Table 4-I. Molecular Parameters!

Molecular Atom Hard-Sphere Radius (A)

SH 0.65

0 0.88

F 0.83

C1 1.18

Monatomic Collision

Partner Hard-Sphere Radius (A)

He 0.63

O 0.85

Ar 1.12

Equilibrium Bond Average Geometric

Diatomic Distance = (A) Cross Section (A2)

I OH 0.9706 3.06

HF 0.9171 2.80

HC1 1.2746 4.92

4.3 Collision MechanicsJI The choice of a hard sphere interaction potential reduces the analysis of

the collision process to a study of the configuration at the moment of iripact. The

calculation is most conveniently performed in the precollision rest frame of the

molecule. The rotational and vibrational degrees of freedom of the molecule are

assumed to be initially unexcited. Thus, the configuration is fixed in an inertial

frame at the collision instant.
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Now consider the impact of the collision partners q with the molecular

atoms denoted by the subscripts 1 and 2 (Fig. 4-1). The conservation of momen-

tuma, angular momentum, and energy are given respectively by

v, + m X' +m v' (4-1)

q q q "q 1 1 2 2

xv =m rxvt +mlrlxv' +m2 xv t  (4-2)

qm q r -q q -q q -1 2-2 -2

1 2 1 2 1 2 1 2
-m v -m v' -m (4-3)m v

2 qq 2qq 2 11 + ý-m22 (

.14

Figure 4.1 - Coordinate systems used to describe collision.
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The primed quantities denote post collision values of the atom velocities

ve(a = 1, 2,q), while r. denotes the position of the center-of-mass of the

a atom with respect to the center-of-mass of the molecule at the instant of

I collision.

In order to proceed further, it is necessary to consider the relationship

between the hard-sphere model and a continuous molecular interaction poten-

tial O(r) of the form

(= ( )1 (rlq) + 02 (r 2 q) + 2112w2 t2  (4-4)

I aq a =q -ro- , L= 1, 2 (4-5)

Here p12 is the reduced mass of the molecular atoms, w is the frequency oi

vibration, and t is the amountby which the distance between the molecular

atoms has departed from its equilibrium val,.e (the "spring" deflection). For

collisions sufficiently energetic to penetrate well up on the repulsive core of

either atomic potential, 0 a (r aq), the local length. P, over which the interaction

I occurs may be characterized by

I -
( 1a )I(4-6)a r ~arq raq 0o)

The radius, r , is chosen so that , a(ro) is in the interaction energy range under

j consideration. (28) The interaction time, T, is approximately

SI 29
2T (4-7)

I
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The hard-sphere model may be regarded as the limiting form of 0Q() as

£/r 0 approaches zero, provided that two further conditions are satisfied.

First, the rotational excitation must be such that I «<< 1. The angular

velocity .2 is defined so that the impulsively generated angular momentum of

the molecule about its center of mass is IS2, where I is the moment of inertia.

Under these conditions, the magnitude of the impulse W transmitted to the

collision partner q is directed along the line connecting the centers of the two

colliding atoms. Thus,

mq (.Yq - ) nlw (4-8)

where n1 is the unit normal to the molecular atom.

The manner in which the impulse,-BlW, is divided between the molecular

atoms is determined from the final condition that must be satisfied for the

hard-s -here model to be employed. If the frequency of the vibration is suffi-

ciently ..ow so that wC- << 1, then the impulse is transmitted before the "spring"

can deform. (31) Since the impulse must be transmitted to the second molecular

atom via the vibrational mode, the instantaneous post-collision state of the

molecule nust be such that the molecular atom experiencing the impact absorbs

the compon.nt of the impulse directed along the spring axis, k. (See Fig. 4-1.)

-nlk\V = mlyI • k . (4-9)

If, on the other hand, the vibrational frequency is sufficiently high so that

w-r >> 1, then the molecule will behave like a rigid rotor. and Eq. (4-3) must

be replaced by the condition (31)

(t) =0 (4-10)
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When WT is neither large nor small, the use of the hard-sphere model cannot

be justified on the basis of classical mechanics. However, in order to apply

the ,.iassical approximation to a molecule containing a vibrational degree of

I freedom, the classically computed vibrational excitation must be much larger

than the energy fhw needed to excite that degree of freedom. When this is not

I the case, the rigid rotor assumption r Eq. (4-4)] may still provide a useful

approximation to the rotational excitation, even though the condition WT << I

is not satisfied. This point is discussed further in Sec. 4.7.

The system of Eqs. (4-1) through (4-4) is now used to determine the excita-

tion of the internal degrees of freedom in a single collision for both the rigid

rotor (WT >> 1) and the harmonic oscillator model (COT << 1). To this end, it is

convenient to replace the molecular velocities, vY by a center-of-mass

velocity, vCM, an angular velocity, 2, and a spring deflection velocity, w*k.

These quantities are defined by the conditions

(ml+ m 2 ) vCM =mlvl + v2v , (4-11)

19. malkxv' -m kxv (4-12)1 1- 1 m2'2-l*
)C2) •k = w (4-13)

thus,

v' =v +S0xak k+ m 2  k , (4-14)

-1 -CM I M + M 2

m w*
"v 2 =vCM -x ak 1 k (4-15)

I
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By substituting Eqs. (4-14) and (4-15) into Eqs. (4-1) through (4-3), the conserva-

tion laws take the form

ým ' m2) YCM =mq (Yýq v~q) (-6

mqq v -q) =v U (4-17)

1 2 1 2' 1 2 (421)*VCM+ 2 + (4-18)2mq q 2mq q 2 ý m1 +m2) vCM +P -' 12w

Equaticns (4-2) and (4-6), together with the expression

-nW. k = mv k+ P1w (4-19)

-1 _V 1YCM , 12

for the oscillator model, and the condition

w* 0 (4-20)

for the rigid rotor model, constitute the formulation of the problem.

The above system of equations is readily solved by using Eq. (4-8) to

eliminate v' from Eqs. (4-16) and (4-19). Thus, vCM, ft, and w* can be ex-
qI

pressed as functions of the impulse W as

nlW

vCM m- l+m 2  (4-21)

( x n1) W
(- q -~ I) (4-22)

S n1 k) W
W * - -__ (4-23)mI
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The last equation is replaced by w* 0 for the rigid rotor model. Substitution

[ of Eq. (4-22) into the energy conservation equation yields the following results

for W by using the harmonic oscillator model

I
2v

[r 2 - (4-I4)

I (qD)+• (-k) "12 q ' j
where

r =alk+ R1 + n0
-, "q ( q)

and

__ • mDmq
AqD = mD +mq- mD mI + m2

D q

Here, R and R are, respectively, the hard-sphere radii for the molecular
1 q

atom experiencing the collision and the collision partner. The corresponding

expression for the rigid-rotor model is

W =2 q n n 2 (4-25)
[ 1 (r q x ni2

[(g•qD)- + ),

Expressions (4-21) through (4-25) constitute the required solution. Ignoring

those incident configurations that lead to multiple impacts (e.g., certain col-

linear collisions) as statistically unimportant compared with those that do not,

1
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the rotational and vibrational excitation energies experienced in an individual

collision are given by

E = ~~I 2W (4-26)V t 12w,2

ER = 112 .(4-27)

These expressions follow immec ', telv from the assumption that the deformation

t is small compared with aI + a2, s , that the post collision oscillations can be

expressed in terms of a Lagrangian, LV, of the form

1 .2 1 22
LV = 2'12(w*) - 12"' • (4-28)

The modification of these rtsults because of the presence of a steep, con-

tinuous potential of the type considered above could be calculated, in principle,

using multi-time scale perturbation techniques. For example. such a calcula-

tion could be employed to determine the effect of a slow rotation or vibration of

the molecule about the center of mass on the trajectory of the collision partner

as it passed through the potential, 0,(r q), of one of ttc molecular atoms.

The rotational and vibrational excitation would be altered by an amount of the

order of 121 T by this phenomenon, which would permit vibrational excitation of

this magnitude to occur even for collisions perpendicular to the molecular axis.

Similar procedures could be employed when the vibrational period is much

smaller than the interaction time. However, it is not clear that such elaborate,

classical calculations of vibr itional effects should be performed until it is

evident that a classical description of this channel is appropriate.
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4.4 Kinematics and Probability Model

The colliding atom is assumed to be drawn from a uniform beam of such

Satoms with common velocity vector v q. The diatomic molecule is assumed to

have a random orientation with respect to its center-of-mass at the time of
impact. In what follows, the (i, j, k) coordinate system is fixed in the molecule

with origin at the center-of-mass and the axis-of-symmetry in the z-direction

(see Fig. 4-1), so that the beam is viewed as randomly oriented. By sym-

metry, v can be assumed to lie in the y-z plane for all collisions, making an

angle 0 with the z axis, with differential probability density, sin 0d0. The

location of the collision partner's center prior to impact is given by the imp-ct

parameter b and an angle /3, which are polar coordinates in a plane orthogonal

to Vq. Since this distribution is uniform, the differential probability density is

b db dfl. The third location parameter, D, the initial distance apart, is, of

course, arbitrary. A second coordinate system "*, j*. k*), centered in the

colliding atom. is defined by rotation

i "i. = j cos0 -k sin 0, k* j sin 0-+ k cos 0 (4-29)

so that the beam axis is k*. It follows that the initial location of the atomic

center is

p = Dk* b (cos 0 i*+ sin -j*)

S= (Dsin 0+ b sin 3ccs 0) j+ (bcos

S+ (D cos 0 - b sin 0 sin 0) k (4-30)

I The point of impact with one of the molecular atoms (say atom 1) is deter-

mined next. Let the vector between atomic centers initially be c =- p - alk.

At the time of impact, the colliding atom has traveled a distance p in the
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direction -k*. Let the final vector between centers be (R1 + Rq)n , where

n' is a unit vector relative to atom 1. It follows that

RI+R n' +c -qn , (4-31)

which defines both p and n' . The local angles 0' and c' are found from

cos 0' = n' • k and cos a' =n' • k*. The solution to these equations yields

sin , a ( 1 sin 0 + b sin P3)2+ (b cos P)2/(Rl + R q) (4-32)

p = D - a Cos 0 - ýR1 + Rq) cos ', (4-33)

cos 0' = cos 0 cos c' - sin 0 (a 1 sin0 + b sin P)/(R1 + Rq) (4-34)

where, if the r.h.s. of the first equation is greater than unity, there is no

collision. In the case of impact with atom 2, one must replace R 1 by R2 , and

a1 by -a 2 .

Finally, let pl' P2 denote the distance p from impact with atom 1 and

atom 2. respectively. Then, the actual impact will occur on atom 1 if p1 < P2'

and on atom 2 otherwise (which choice is independent of D1. Also, given the

angles 0 and 13, a maximum feasible impact parameter, bmax, is obtained by

setting sin e' = 1.

4.5 Calculatien of Rotational and Vibrational Energy Distributijns

For each collision, the rotational and vibrational energies are given by

Eqs. (4-26) and (4-27), where lor the rigid rotor, EV = 0. In the following

trcatment, these energies are nnrmalized by the center-of-mass energy,
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SCM 1/2 pqDVq.2 Assuming for definiteness that the impact occurs on atom 1,

in the vibrational case the formulas simplify to

IEv,/EcM = E1 sin2 0' Co 2  ' ,v /E E C' .cos 2 ee
SE CM -1

SThus, the maximum energies, ER and EV, occur for normal collisions at(4-35)

0' = 7r/2 and 0' = 0, respectively. The maximum normalized value in either

.1 case is

4 ~M2 (
E =4 q 12 1 + ,(4-36)

which is a function of the masses only and never exceeds unity. It is also

easily seen that E1is larger than E2 (corresponding to impact on the heavier

atom 2).

In the rigid rotor case, the formula (for atom 1) becomes

d /-2r ~ ~~ AqD P 12 PD"1 'F•/EcM -- 4 21 + 20'nsi1 9" Cos '14/c ~ g '2 ( +'D 12 sin2 o s~i r cos2

Im1  mI 1* (4-37)

jIn this case, the maximum normalized energy is a function of 0', as well as the

masses, and attains the value unity for a normal collision with

2 I
sin 0' - (4-38)!1 mqm2 /

(if, and only if, the r.h.s. is less than unity).
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This condition is equivalent to AqD a2 > I, and, if violated, the maximum value

is identical to the vibrational case (namely, E 1 at 0' = 7r/2). Again, impact on

the heavier atom clearly leads to higher energies.

The probability distributions for the normalized energies are computed by

a Monte Car'l, technique for each of the collision pairs in Table 4-I, and for

both the rigid rotor and vibrational models. Pseudorandom numbers are used

to generate sample collisions with the collision parameters (0, fl, b) drawn

from a probability density with differential

b sin 0 dO dbd3 . (4-39)

This amounts to generating uniform random variables (cos 0, 0, b 2) and deter-

mining the local collision angles (0', a') or (0" , a" ) by the formulas of the

previous section. By considering symmetry and realizability, the collision

parameters are restricted to the intervals 0 < 0 < 7r, 0 <_3 < 7r, and

0<b max(0, 1 ).

From the sample collisions, a frequency histogram of E/ECM is con-

structed for each of the three energies, Eý, E%, and EV This histogram is

converted to an approximate probability density P(x) by the definition

P(x) = prob xi < E/ECM < x. + Ax } /Ax_, (4-40)

for x. < x < x. + Ax. In all cases, 20 subintervals are used on the interval
-- 1

0 < E/ECM : (E/ECM)max, so that Ax = 0. 05 E, for the vibrational model, and

Ax = 0.05 for the rigid model. The total number of sample points used is

50, 000. The results are displayed in Figs. 4-2 through 4-10.
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Figures 4. 2 through 4. 10 - Normalized probability distributions for the inelastic

j excitation of the diatomic hydrides OH, HF and HC 1

in collisions with He. 0, and Ar. Solid histogram

I represents EV/2 and drshed-dotted histogram,

Ev/EcM, for the harmonic oscillator-atom colli-

sions. Dashed histogram represents r/E.CM for

I rigid-rotor-atom collisions. Specific sets of colli-

sion partners are indicated for each figure.
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"Separate runs were made for atomic collisions with H3 5 C1 and H 37C.

I However, the probability distributions showed virtually no isotope effect, and

only the results for H3 5 C1 are displayed. Tabie 4-f1 gives the sample means

t in tle following format. The top number for each collision pair represents the

I Table 4-1H. Normalized Mean Excitations

Diatomic Atom He 0 Ar

Er/EcM 0.127 0.112 0.113

V, /EcM 0.083 0.069 0.072
-I OH

*E "T/ECM 0.036 0.029 0.029

IPp 0.283 0.296 0.309

• /ECM 0.127 0.106 0.103

ER/ECM 0.083 0.063 0.062
I HF Ev/EcM 0.035 0.026 0.025

I P1  0.300 0.319 0.329

SILR/ECM 0. 077 0.059 0.055

V ER/EcM 0.044 o.029 0.030
H, H C1

I Ev/EcM 0.023 C. 015 0.014

P1  0.186 0.195 0.210
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mean fraction of the center-of-mass collision energy which the rigid rotor-atom

collision imparts to the diatomic's rotational modes (Eý/ECM). The second

number for each pair is the mean fraction imparted to the rotational modes in

the harmonic oscillator-atom collision (Fv /EM). The third number repre-

sents the mean fractional energy in the vibrational mode for the harmonic

oscillator-atom collisions (Ev/ECM). The sample probability p1 of impacting

on atom 1 (the H atom) rather than atom 2 is also shown as the fourth number.

Estimates of the maximum relative error in the plotted values of P(x) can be

made by using a normal approximation to the multinomial distribution for a

histogram. These estimates typically range from 2% for P(0) to 100% for

P(E max). The relative errors in the means and p1 are all within 2,.

4. 6 An Approximate Distribution for the Vibrational Model

The simplicity of the energy expressions in the vibrational case leads

naturally to an approximate analytic expression for P(x) which is quite accurate.,

First, assume that the probabilities p1. P2 of impacting atom 1 or atom 2.

respectively, have been accurately estimated by Monte Carlo methods. and then

restrict attention to,- say, atom 1. The probability distributions for the random

variables (0' , c' ) are derived from those for (0. b, 0), and then transformed

analytically to obtain the distributions for the energies., However, to make the

transformation tractable, a certain geometric approximation is introduced.

From physical considerations, one expects the distribution of hits on the

surface of atom 1 to be raridom, that is, cos 0' is uniformly distributed., This

conjecture is verified both by simulation and manipulation of the equations of
9

transformation. Similarly, inspection of the equation for sin 2a' leads to the
2

conclusion that it (and hence cos a" ) is also uniformly distributed indepen-

dently of 0'
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Both these results ignore the effects of shielding by atom 2 on some

trajectories that would otherwise impact atom 1. Such shielding is of two

types (see Fig. 4-11). In the first type (total shielding), a range of angles

I0 0 < 0' < ir is totally inaccessible. In the second type (partial shielding), for a

range of angles 01T < 0' <_ 0k the probability of impact is reduced, and the dis-

I tribution of a' depends on 0'. For 0 <' <0 0<0 atom 2 has no effect. The

approximation made is to ignore partial shielding, while taking account of total

shielding. The formula for 0 is easily obtained from the geometry,

-cos0K [k (R2+ Rq) 2 + (a,+ a2 ) 2 + (R11+ R 2 )2

-112 (a,+ a 2) ('1 + Rq)I (4-41)

R,) I

Fiur 4. 11-DfntoIfte nls0kadO

, / 81

II

I - •

I I/iue41-Dfntono h nls 0  n

I• a1 +a21-81)



Now, still restricting attention to atom 1, let

Y =(EV/E CM)/El , Y2=(F/ECM /E 1  (4-42)

x 1 = cos2 ' , x2 = cos' . (4-43)

Then,

y Xx2 x(Yl 1XX2  ' Y2 =Xl -x 2 )

and (xl, x2 ) are uniform random variables with ranges 0 < xl < 1 and

-61 =Cos k: _x2 _ 1. (Note, Ok < 71/2 for the collision pairs considered.)

It is now straightforward to derive the distribution of (y1, Y2 ). Using the

Jacobian of the transformation J = 2xIx 2, the joint distribution is found to be

_ 1+ r-/
1 dx dx2 - (I + Yl 1Y +y (4-44)

1+ 61 1 2 2( 1 + ) _ (Y1 + Y2) dYd Y2

from which the marginal distributions for yI and y2 are obtained by integration.

Denote the joint density function by f(yl' y2 )" In order to do the integrations, it

is necessary to specify the region of admi3sible (y,' Y2) r outside of which

f(y 1 y2 ) =-0]. Since the Jacobian, J, equals zero along the line x2 = 0, the

integrals must be calculated separately over different regions, according to the

sign of x 2. By using the bounds on (x , x2 ), these regions are R, and R 2 , as

indicated in Fig. 4-12; i.e.,

S • 2 fY l'Y2) dy dy 2  = 1 (4-45)

R 1+ 2
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Figure 4. 12 - Regions of integration in the yl, Y2 plane.

I Finally, the marginal distributions are obtained as follows:

I l-y 1

(- 1 (Y-1/2' 2

1~j )d 1 if Y, k2+j f(Y 2 ) Y 2 d Y 1 +- I + 1 Y i f /
0

1-Y1  1-Y 1
f Y-1/2 1 2 f 1 ~(

1 0 (1-~)/6]Yi(4 -46)1
!0
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1-Y 2

21-Y 1 9 y) Y 12 cos /, if Y2  -6 1

(4-47)

f 6 2 162ý-

+~ f(ly)d, e cos h- f-12\

0
0

+ cosh 1  1-6}if y2 <1-6

The means are found to be Yl = 1/6 [ (1 + 63)/(1 + 6)], andY 2 =1/2 - yl,

where the last relation follows from the identity y1 + y2 = XV"

Now consider impacts on atom 2. Exactly the same reasoning leads to

identically the same distributions if 61 is replaced by 62 = cos 01.

(Note: 0O < 7r/2.) The distributions on the two atoms separately can be folded

together with the empirical probabilities p1 and p2 to yield the total density

, - -= v=p1f1 F(E/ECM/El11 1]/Ei+ P v iL( E =/EC ;/E2, 62 /E.

(4-48)

and similarly for Ev. replacing fl by f2 " (Recall that dy 1 = d(Ev/EcM)/E1.)

In Fig. 4-13, this approximate density is compared with the Monte Carlo

results for one case and is observed to be within the statistical error. The

approximate and sample means differ by lesb Lhan 1,. (,,.otet A similar

approximation can be constructed for the rigid rotor model, but would involve

numerical integration for the densities.)
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4.7 Differential Energy Transfer Cross Sections

The probability distributions, P(E/ECM), shown in Figs 4-2 through 4-11,

can be converted to differential energy transfer cross sections describing the

harmonic oscillator rotational or vibrational excitation or the rigid rotor rota-

tional excitation as a function of incident center-of-mass kinetic energy by the

relation,

aou ( E/E cM) 'hs P ( E/E CM)
= M(4-49)8E E CM

where ahs is the geometric hard-sphere cross section for the appropriate atom-v v
diatom pair, and E = ER, EV, or , respectively.

Approximate hard-sphere cross sections for the system studied can be

calculated by the following proccdure." The average geometric cross sections

for the hard-sphere diatomic models are listed in Table 4-1, These cross-

sectional areas correspond to spherical areas of projection with radii equal to

0.99A, 0.94A, and 1.25A for OH, HF, and HC1, respectively. Normal hard-

sphere collision cross sections (in units of A 2) for each atom-diatom pair can

then be constructed from the relation

Uhs =7rd 2  (4-50)

where d b is equal to the effective spherical radius for the appropriate diatomic
as listed above, plus the hard-sphere radius, Rq, of the appropriate atomic

collision partner, as listed in Table 4-I.
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4.8 Discussion

The average energy transfer results listed in Table 4-Hl, and the energy

transfer probability distributions shown in Figs.4-2 through 4-10 can be inter-

preted by noting that energy transfer in the classical, hard-sphere collision

model used in this study depends only on the reduced mass of the atom-diatomic

I hydride system and on geometrical constraints that are, in turn, dependent on

hard-sphere radii and bond distances. These geometrical constraints arise

Jpartly from the fact that some impact points on tie diatomic molecule are

inaccessible from certain directions due to shielding by the second molecular

atom, while other impact points are compietely inaccessible due to the finite

size of the colliding atom. A discussion of the interplay between the reduced

1 mass and geometric effects for atom-rigid rotor collisions was included in a

previous publication. (28)

For kinematic reasons, collisions with the hydrogen atom in the diatomic

hydride are much more effective in transferring precollision center-of-mass

kinetic energy into the diatom's interm,1 modes. It is well known that for sim-

- I ple atom-diatomic models, collisions perpendicular to the diatomic bond activate

only rotation, while collinear collisions ,'ctivate only vibration. As can be seen

I from Eq. (4-35), for impacts on the hydrogen atom ihe model used in this work

predicts that a specific fraction of the impulse imparted during a collision is

j transmitted to the internal modes. This impulse is transmitted into the vibra-

tional mode for collinear collisions and into the rotational mode for perpendic-

ular collisions, and is divided between the two, modes at intet -nediate angles.

I Table 4-ll- shows this fraction of center-of-mass energy f from Eq. (4-36)],

transmitted into internal modes for normal collisions on the diatomic hydrogen

I atom as a function of the atom-diatomic hydride collision pair. These entries.

then, represent the maximum fraction of the center-of-mass energy which can

I go into either internal mode for each collision pair, These results can be con-

trasted with the fact that for each of the atom-rigid rotor pairs, impact points

exist that allow transmittal of all the center-of-mass kinetic energy into the
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Table 4-I1. Maximum Normalized Energy Transfer
to Internal Modes (ER/ECM or E /ECM)
in Atom-Harmonic Oscillator Collisions.

Diatomic Atom He 0 Ar

OH 0.744 0.405 0.300

HF 0.730 0.379 0.271

HC1 0.691 0.311 0.195

diatomic rotational mode. This difference between the dynamics of the atom-

rigid rotor and the atom-harmonic oscillator systems is mirrored in the ex-

tended tails of the P(E%/ECM) distributions shcwn in Figs. 4-2 through 4-9.

Some uncertainty exists in determining the proper way to interpret the

results of classical calculations involving the collisional activation or deactiva-

tion of a quantized internal mode when the average classical collision exchanges

less than a full quantum of energy with the mode in question. Thompson has

discussed this point recently in regard to his Monte Carlo trajectory calcula-

tions of vibrational deactivation. (27(b)) Parker( 3 2 ) has shown that a classical

calculation of the collinear collisional excitation of a harmonic oscillator will

yield the same average vibrational energy transfer as the quantum mechanical

solution first proposed by Jackson and Mott(3 3 ) if the initial collisional kinetic

energy is much greater than the energy of a vibrational quantum transition in

the quantum treatment. For the diatomic hydrides considered in this work, the

transition from the ground to the first vibrational state requires on the order of

0.4 to 0.5 eV. Thus, unless the average impulse transmitted along the diatomic

bond axis becomes significantly larger than 0.4 eV, the vibrational energy dis-

tribution functions, P(Ev/EcM), shown in Figs. 4-2 through 4-10, will be

largely invalid. Since the great majority of any sample of collisions will be

both grazing and off the collinear axis, the average initial center-of-mass
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collisional energies must exceed the 1- to 10-eV range for which our calculation

I? was originally intended before the vibrational distributions in Figs 4-2 through

1- 4-10 apply. Table 4-HI shows that the average classical vibrational excitation

varies between 3.6% (He + OH) and 1.4% (Ar + HCl) of the initial center-of-

mass collision energies. Thus, even in the most favorable case (He + OH),

| the initial center-of-mass energy must exceed 12 eV before one vibrational4

quantity will be excited on the average. Since, on the average, more of the

j collision energy goes into rotation and even the higher rotational levels are

much more closely spaced than vibrational levels, a similar problem does not

arise in calculating the rigid-rotor rotational excitation. (28)

The purpose of this calculation was to assess the appropriateness of the

rigid-rotor approximation in the calculation of rotational excitation probabilities

in collisions with initial center-of-mass energies of a few eV. The results of

S1 the atom-harmonic oscillator calculations show that, classically, vibrational

A excitation does reduce the number of collisions that exhibit high degrees of

rotational excitation. However, in the collision range between 1 and 10 eV,

i most of the classically calculated vibrational excitation is "forbidden, " in the

sense that it corresponds to less than a vibrational quantum. It remains for

I /future work to determine, in detail, how seriously this nearly "closed" channel

affects the rotational energy distribution for this energy range. In the mean-

I time, it seems reasonable to expect the rigid-rotor rotational excitation prob-

abilities, P(ER/EcM), rather than the harmonic oscillator collision probabil-

ities, P(E•/EcM), to more closely mirror the actual situation in the energy

I range of 1 to 10 eV. At higher center-of-mass collision energies, the harmonic

oscillator excitation probabilities, P(Ev/EcM) and P'Ev/EcM), should be

i closer to reality.

The calculations presented in this work represent only a "physical" or

i dynamic picture of inelastic excitation in atom-diatomic hydride collisions.

They can be expected to be reasonably approximate for collisions between such

S I closed-shell species as Ar and He with HC1 ard HF.
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Although "chemical" effects have generally been disregarded in this study,

two types of chemical effects can be expected to modify the picture presented

above. The first is actual chemical reaction, which should be most important

in the interaction of oxygen atoms with the hydroxyl radical. The reaction

O+ OH-- 0 2 + H (4-51)

is over 0. 7 eV exothermic, while exchange of the hydrogen atom between 'xygen

atoms is, cf coursr., thermoneutral. Reaction (4-51) has a bimolecular rate

constant of 2. 16 x 10-11 cm 3/sec, apparently independent of temperature. (34)

If this rate holds to the highly nonthermal velocities modeled in this calculation

it would represent a reaction cross section (at a relative velocity of 6 x 10 5cm/sec)

of 3.6 A 2. The approximate hard-sphere cross section for the models of 0 and

OH used above is 10. 6 A 2, so that an appreciable fraction of the collisions be-

tween 0 and OH may be expected to follow a chemically reactive channel, rather

than the inelastic activation channel calculated above. A chemical reaction could

also be important in the nearly thermoneutral hydrogen atom exchange betweea

O and HCL.

The second type of "chemical" effect has been demonotrated in a nunber of

shock tube studies where nonrare-gas atom collisions with diatomics have shown

an anomolously large cross section for vibrational deactivation. (35-39) This

effect has been attributed to the increased "stickiness" of the collisions, as

represented by the formation of some type oi moderately long-lived collision

complex that can effectively transfer energy out of the diatomic 's vibrational

mode. Nikitin and Umunski(4 0 ) have recently speculated that this stickiness is

due to "vibronic" vibrational-to-translational transfer involving excited elec-

tronic states of the atom-diatomic complex. Because of the principle of micro-

scopic reversibility, this effect could alsu be important in the translational-to-

vibrational energy exchange modeled above for collisions involving 0 and OH.
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g collisional energies must exceed the 1- to 10-eV range for which our calculation

S| was originally intended before the vibrational distributions in Figs 4-2 through

4-10 apply. Table 4-Hl shows that the average classical vibrational excitation

I• varies between 3.6% (He + OH) and 1.4% (Ar + HCl) of the initial center-of-

mass collision energies. Thus, even in the most favorable case (He + OH),

I• the initial center-of-mass energy must exceed 12 eV before one vibrational

quantity will be excited on the average. Since, on the average, more of the

J collision energy goes into rotation and even the higher rotational levels are

much more closely spaced than vibrational levels, a similar problem does not

arise in calculating the rigid-rotor rotational excitation. (28)

The purpose of this calculation was to assess the appropriateness of the

rigid-rotor approximation in the calculation of rotational excitation probabilities

in collisions with initial center-of-mass energies of a few eV. The results of

the atom-harmonic oscillator calculations show that, classically, vibrational

excitation does reduce the number of collisions that exhibit high degrees of

rotational excitation. However, in the collision range between 1 and 10 eV,

I most of the classically calculated vibrational excitation is "forbidden, " in the

sense that it corresponds to less than a vibrational quantum. It remains for

future work to determine, in detail, how seriously this nearly "closed" channel

affects the rotational energy distribution for this energy range. In the mean-

I time, it seems reasonable to expect the rigid-rotor rotational excitation prob-

abilities, P(%/ECM), rather than the harmonic oscillator collision probabil-

ities, P(E /EcM), to more closely mirror the actual situation in the energy

S I range of 1 to 10 eV. At higher center-of-mass collision energies, the harmonic

oscillator excitation probabilities, P(Ev/EcM) and P(Ev/ECM), should be

closer to reality.

The calculations presented in this work represent only a "physical" or

4: j dynamic picture of inelastic excitation in atom-diatomic hydride collisions.

They can be expected to be reasonably approximate for collisions between such

[ I closed-shell species as Ar and He with HCI vard HF.
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Although "chemical" effects have generally been disregarded in this study,

two types of chemical effects can be expected to modify the picture presented

above. The first is actual chemical reaction, which should be most important

in the interaction of oxygen atoms with the hydroxyl radical. The reaction

O+ OH-0 2 + H '4-51)

is over 0.7 eV exothermic, while exchange of the hydrogen atom between oxygen

atoms is, of course, thermoneutral. Reaction (4-51) has a bimolecular rate

constant of 2. 16 x 10-11 cm 3/sec, apparently independent of temperature. (34)

If this rate holds to the highly nonthermal velocities modeled in this calculation,

it would represent a reaction cross section (at a relative velocity of 6 x 105cm/sec)

of 3.6 A2 . The approximate hard-sphere cross section for the models of 0 and

OH used above is 10. 6 A 2, so that an appreciable fraction of the collisions be-

tween 0 and OH may be expected to follow a chemically reactive channel, rather

than the inelastic activation channel calcutated above. A chemical reaction could

also be important in the nearly thermoneutral hydrogen atom exchange between

O and HC1.

The second type of "chemical" effect has been demonstrated in a nunber of

shock tube studies where nonrare-gas atom collisions with diatomics have shown

an anomolously large cross section for vibrational Jeactivation. (35-39) This

effect has been attributed to the increased "stickiness" of th' collisions, as

represented by the formation of some type of moderatelyr long-lived collision

complex that can effectively transfer energy out of the diatornic Is vibrational

mode. Nikitin and Ur..unski 4 0) have recently speculated that this stickiness is

due to "vibronic" vibrational-to-translational transfer invo.'virig excited elec-

tronic states of the atom-diatomic complex. Because of the principle of micro-

scopic reversibility, this effect could also be important in the translational-to-

vibrational energy exchange modeled above for collisions involving 0 and 01.
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As noted in Section 3, the problem of multiple collisions has also been

ignored in the present work. Multiple impacts are important for collinear or

nearly collinear collisions, and can influence the vibrational excitation distri--

bution. Since the focus of this work is on the rotational excitation distribution,

which is uiaffected by collinear collisions in the impulse approximation, it was

felt that ignoring multiple impacts was a justifiable approximation. The

classical calculation of collinear collisions between hard sphere atoms and

diatomics, including the effects of multiple collisions, has been explored in

detail by Benson et al. (41)
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5. PURE ROTATIONAL EMISSION FROM DIATOMIC MOLECULES

IN THE QUANTUM AND CLASSICAL LIMITS

5.1 Introduction

One of the most useful concepts in the construction of the quantum theory
is the correspondence principle. (42) It can be stated in several ways, includin,

the following way: "Qaantum theory must approach classical theory asymptoti-

cally in the limit of large quantum numbers. ,,(43) Thus, when dealing with mani-

festly macroscopic phenomena, classical physics is an appropriate description

of nature. There is, therefore, a transition region where classical physics is a

more-or-less good approximation to the more exact quantum description of what-

ever system is of interest, or put somewhat differently, classical physics is one

approximation in the arsenal of all possible approximations to the complete,

exact quantum theory. As such, the quantitative limits on the regioi, of validity

of the classical approximation for a system are clearly of interest, just as are

the limits of validity of any approximation.

Furthermore, there are two reasons why the limits of validity and use-

fulness for the classical theory are especially interesting. First, a calculation

that displays the explicit evolution from quantum to classical behavior as quantum

numbers increase is a quantitative illustration of the correspondence principle.

Second, classical calculations tend to be more tractable than the analogous quan-

t•,m calculations, so that when the classical theory may be usefully applied, it is

usually advantageous so to do.

The problem that is addressed here is that of pure rotational radiation

emission from diatomic molecules with a permanent electric dipole moment.

In particular, the emission into a broad frequency band, which includes the con-

tributions of several individual transitions, is studied. This calculation is done
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both purely quantum mechanically and purely classically; then the results of the

two theories are quintitatively compared to demonstrate the onset of classical

behavior as the relevant quantum numbers (and hence energies) increase.

To compare the classical and quantum theories of pure rotational

emission, it is necessary to consider radiation in a broad wavelength band.

If spectral information, line-by-line, were desired, a 2 lIssical approximation

would be of little use. Thus, the wavelength band must enclose a number of

rotational lines for straightforward comparison between the two theories. The

results of the calculation show that for large quantum numbers, a band con-

taining as few as approximately five lines is sufficient for reasonably close agree-

ment between the two theories.

Quantitatively, the results of this calculation apply only to simple rigid

rotors whose energy levels are (2 ( + 1) -fold degenerate, where f is the princi-

pal rotational quantum number. Qualitatively, however, these results shed light,

as well, on the classical limit for the asymmetric rotor with a permanent electric

dipole moment. Since the levels of an asymmetric rotor are nondegenerate, and

the energy levels are more closely spaced on the average than for the case of a

simple rotor, it is clear that whenever the classical model of rotational emission

is valid for the diatomic case, the classical model for radiative emission from an

asymmetric rotor will certainly be valid for similar quantum numbers. (44)

5.2 Quantum Mechanical Formulation

The only nonzero Einstein coefficients for purely radiative decay for a

rigid rotor with permanent electric dipole moment, • , and moment of inertia

I, are those in which the principal quantum number decreases by 1, and the

second quantum number, m, changes by 0 or + 1. (45)

K-3+m) ( -m) (5-1)
A m-14-lm (2 f+l) (2 f-I)
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A U3(+ M) (5+-2-)1

Li "
f m--.( - 1, m-1 2 (2f+ 1) (21 - 1) (5-2)

Am m 1 £ (I-m) (f-m-l) (5-3).m-f-1,r+ 2 (2f+1) (2f-1) '

where

3 = (3 2 / ) (5-4)

The Einstein coefficient for the transition from any m value in state f

to all m' values in state f -1 is simply the sum of the above three expressions,

and is independent of m. Thus,

Af = P •4/(2f+ 1) .(5-5)

This means that the problem of radiative cascade from one rotational energy

level to the next is independent of the quantum number, m.

In order to determine the power radiated by an ensemble of excited

rigid rotors, the population of each excited rotor energy level must be found.

If it is assumed that at t = 0 there is an ensemble of rotors all excited into the

rotational state with principal rotational quantum number f o£ then the equation

governing the average population of the f level is given by the following

expression, in the absence of collisions:

dN1S=-Af Nf (t) , (5-6)
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where N1 o (t) is the average population of the 1o level, regardless of the quantum

number m. If the normalized boundary condition of Njo(t=0) = 1 is imposed, the

solution of this simple equation is

-Afo t

Njo (t) = e (5-7)

In general, the population of the co-n level obeys the following equation:

dN( -n
o = -A N - A N (5-8)dt =- -n I-n++I

o o o-n+l o-n4-1

Because of the selection rule, C = - 1 for radiative decay, only the population

of the level one step higher than the level of interest can contribute to the popu-

lation. Thus, the only two nonzero terms on the right side of the above equation

have been included.

The above set of equations, along with the f equation and the boundary0

condition at t, = 0, is easily solved. For f / fol the general solution is

ifo -Af, t fA Af _1 ... Af+ 1)

N1 (t) = e o (5-9)

S- 0
f'=f

The above equation gives the average population of the various rotational energy

levels for an ensemble of rotors with the normalized boundary condition that

N PO (t=O) =landN, 1 0 (t=O) 0.
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I. The energy given up by a rigid rotor when it undergoes a radiative transi-

tion from state f to state 9 -1 is

/ - E (12/2 ( +1) - (-1I ) (f-i + 1)] =(h 2 /I) P (5-10)

"The contribution to the average radiated power by the P th level Pf is, therefore,

I igiven by

fP = N0 (t) (Ep- E•)A At (5-11)

To compute the total average emitted power, it is now only necessary to sum

up the contribution from each individual transition. The average total power

emitted by an ensemble of particles, all of which were in the state f at t = 0, is

2P 0f t ) = {i2/A t AA A ( 1  A o o

0 1 >"ef

I -'-o A¢ e A.° (5-12)

0 0
•/ The above expression is the total radiated power. If only the power emitted

into some frequency band is of interest, the sum overf€ must be modified to include

S I only those transitions that contribute to the band. If the lower and upper limits

for the angular frequency for the band are designated w•1 and w2 , respectively,
A then,

I W < (El - E•_)i~w 2  . (5-13)

II
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This is an implicit relation for the maximum and minimum allowed 's in

the first sum over f in Eq. (5-12). The power in a given band will simply be

denoted by P(fo, t; W1 I W 2).

Equation (5-12) gives the power radiated as a function of time. Therefore,

to find the total energy radiated into the band, P must be integrated with respectSto tiefrom 0 to t =c hs
EN ( f0 ;, 1 IL2 ) f dt P ( r0, t; (AV, w 2 ) (5-14)

0

and

EN 0(; wi, W2) 02 2/1)1 8 i f /I- WI) e (w2 -li i/1)

£ A-

H (A f, A

+ (hjo/I-w1) 6(w2-£i~o/I) (o (5-15)

where e(x) 0 forx < 0 (5-16)

f1 for x > 0

The two-step functions in Eq. (5-15) arise because of the band limits on the first

sum (i.e., as a result of Eq. (5-13).

Rewriting the sum of the products of the pair-wise differences of the Af' s

in Eq. (5-15) in terms of a Vandermonde determinant, (4 6 )then putting all the

terms in the V sum over this common denominator, the total band energy, EN,

simplifies considerably.
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EN (o 0 ;WlW 2 ) 1 2 9(hI/I-wl) 8(w 2 -tif/1) (5-17)

I This expression simply means that each level in the band pass contributes an

energy of (h2 /I) to the total energy, which could have been written in the

beginning. The integration of the power to get this simple expression for the

energy is, therefore, a check on the validity of the power formula, Eq. (5-12).

I Equations (5-12) and (5-17) are the quantum mechanical expressions

for the power and energy emitted by a rigid rotor with a permanent electric dipole

moment. The power emitted by such a rotor may also be calculated by using

strictly classical physics. It is this classical version of the calculation to which

S I attention is now directed.

1 5,3 Classical Formulation

A classical rigid rotor with a permanent electric dipole moment radiates

as it rotates, since the two charges making up the dipole are being accelerated

because of their circular motion. The dipole is radiating energy away, so that

there is an effective torque acting on it, the radiative damping torque, -(44,47)

3..
r = (2/3c ) x , (5-18)

where ý. is the electric dipole moment, and the dots signify a time derivative.

For pure rotation

= WX i)XWXP , (5-19)

I where w is the rotor's angular velocity.
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This classical model for radiative damping and emission now reduces to

solving the equation of motion for w, using the torque, F. For a simple
rigid rotor,

IwF , (5-20)
- -

or

( ýL2 3c3 3 (5-21)

The solution of this equation is straightforward, and leads to the following

expressions when using the initial condition that w (t=0) = w00

2 1/2
W= W/ ( 1+6 w 02 t) , (5-22)

where

6 = 41 2/3c 3 1 (5-23)

In order to find the power radiated by this rotating dipole, it is necessary

only to use these expressions for w in Larmor's power formula:( 4 7 )

S 3) 2 (5-24)

or, upon using Eq. (5-22),

P (16/2) o0 4/(1+6022 t) (5-25)

This is the classical analog to Eq. (5-12) for the power en'itted from a quantum

mechanical rigid rotor with a permanent electric dipole moment.

The above equation is the total average power emitted by the rotating dipole.

If one is interested in the power emitted into some frequency band from w 2 to

1 with, for example, w 2 > W 1 ' then this expression must be modified to
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include contributions between only the proper frequencies. Thus,

I w 2)= [(16/2) wo4 / (1+26 wo2 t)

I (W 2[2 -w)0 (W-Wl)] . (5-26)

I The total energy radiated during a complete band pass, EN, by a classical

rotor is simply the difference in energy of the rotor between the state when it is

5| at the top of the band and the state when it is at the bottum of the band.

EN= (1/2) I(2 2  - 21 ) for w° > w2

(1/2) I(wo02 12)l for W2 < wo< •w2  (5-27)

l0 for w < w 1

In the completely classical limit, the power described by Eqs. (5-12) and

(5-26) should become identical. In fact, if a classical approximation is made in

- 1 Eq. (5-8), the classical result in Eq. (5-22) may be obtained directly. For a

state, f , Eq. (5-8) may be rewritten asIi
aN-_ K (' Nf + K(N N(5-28)

having used the expression for the Einstein coefficient, Eq. (5-5). In order to

approach the classical limit in the equation, f must become a continuous variable

so that N becomes a function of the two variables t and f . Also, the difference

between the fth and the (f + 1) terms on the right side of Eq. (5-28) must

become a partial derivative. Finally, by recognizing that

2( 1 •2f ( 5-29)
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in the classical limit, Eq. (5-28) becomes

1 8N (f, t) I a 3 N(t (5-30)
K at 2 a• 3,0

or
I N 1 3 8N _3 •

1 -t 2 aN 1 N (5-31)
K at 2 a; 2

The characteristic equations for this partial differential equation are

dt - 1 (5-32)
ds K

di _ 1 F3 (5-33)
ds 2

dN 3 2-
ds 2i N .(5-34)

The solution of these equations is straightforward.

t - S/K (5-35)

and
2 = (s + P-2)-I (5-36)

Having used the boundary condition that when s is zero (and hence, when t is zero),

f is f From Eq. (5-10), the relation between the irequency w and the quantum

number f in the classical limit is clearly given by

Wh = 1R/I. (5-37)
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I Thus, using Eq. (5-35) along with the definitions of K and 6 , Eq. (5-36ý becomes

SW2 = W 2 / (1+ 6 W 2 t) , (5-38)

Iwhich is identical to the purely classical result, Eq. (5-22).

1 5.4 Results

In order to examine the onset of the classical limit for the rotational radi-

S I ation from a diatomic molecule, the power as calculated from both quantum

(Eq. (5-12)) and classical(Eq. (5-26)) theories has been computed for a variety

of initial quantum levels and band passes. The curves for radiated power as a

function of time are shown in Figs. 5-1 through 5-4. In each case the prediction

I of the quantum theory is represented by the solid line, and the prediction of the

classical theory is represented by the dashed line. The clas.-ical curve has

been drawn so that the area under the curve (i.e., the total energy emitted in a

I band pass) is the same as that for the quantum curve. This means that the energy

of the rotating molecule as it decays into the band, classically, is the same as

the highest quantum energy state included in the band; ,ind for the decay out of the

band, the classical energy is equal to the lowest quantum state included in the band.

I The expressions for the radiated power are applicable to any diatomic

molecule with a permanent electric dipole moment, but in order to be concrete,

S I all the results have been plotted for the hydrogen flouride molecule. The results

will be qualitatively the same for other molecules, but since the moment of inertia

and electric dipole moment will vary from case to case, the time scale for decay

will be different for each case. It is a reasonably straightforward matter to apply

• Ithe results to any other molecule of interest.

There are a number of interesting features shown in Figs. 5-1 through 5-4.
" IFirst of all, as the relevant quantum numbers increase, the agreement between

U' the quantum and classical theories improves, as one would expect on the basis of

the correspondence principle. In fact, the results plotted in Fig. 5-3 for an
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initial rotational quantum number of 30, and a band enclosing contributions from

the 25th through the 10th levels, sho-, close agreement between the two theories

for almost all times of interest.

In Figs. 5-1 through 5-3, the initial rotational state emits at a frequency

too high to contribute to the band power, so that there is some nonzero time inter-

val when there is little or no radiation. Classically, the onset of radiation is

abrupt, but quantum mechanically, it is gradual, and, in fact, is nonzero before

the beginning of the classical radiating region. This precursor is a manifesta-

tion of the fact that there is always a nonzero, albeit sometimes quite small,

probability for a very rapid quantum transition.

At the onset of the classical radiation, the classically computed power is

larger than the quantum mechanically computed power by roughly a factor of 1.5

or 2. Th" , "overshoot" rt-nains at higher quantum levels, but tends to become

increasingly narrow, so that this initial classical peak becomes a spike of infini-

tesimal area.

Finally, just as the classical curve begins abruptly, it ends abruptly as

the frequency decays to a value outside the band limits. The quantum curve

decays continuously across this region, and the decay is asymptotically described

by an exponential function with a lifetime equal to the lifetime of the lowest

energy state that contributes to the band.

As Fig. 5-1 through 5-3 show, the main difference between the classi-

cal power and the quantum power for quantum numbers above approximately

10 occurs in the precursor and overshoot at the beginning of the classical radi-

ating region. Figure 5-4 shows the case where the initial state is able to con-

tribute to the band power, so that there is neither a precursor nor an overshoot.

The agreement between the two curves is within a few percent everywhere in the

classical radiating region.
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A number of conclusions can be drawn from the foregoing discussion.

I For rotational quantum numbers greater than 15 to 20, and for bands sufficiently

wide to include the contributions of 5 or more levels, the classical theory very

closely reproduces the quantum mechanical prediction of the radiated power as a

function of time. This is especially true in those cases in which the initial state

can contribute to the power radiated into the band. Any distribution of initial

I radiating states (e.g., a thermal distribution) would remove the abrupt beginning

and end of the classical radiating region. Hence, the sharp corners of the classi-

cal curve would be smoothed, bringing the predictions of the two theories into

considerably closer agreement.

. This work is for the case of a simple or diatomic rotor whose energy

levels are (2 • +1)-fold degenerate. For an asymmetric rotor whose levels are

j not degenerate, the classical theory would probably be adequate at even lower

quantum numbers or energies, and for bands somewhat narrower than those con-

sidered for the diatomic rotor. The classical theory for an asymmetric rotor
(3)A does not predict sharp cutoffs for the power; thus, there would be relatively

few precursor or overshoot problems, as described above.

II
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